1.map算子

private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("map")
.setMaster("local"); //创建JavasparkContext
JavaSparkContext sc = new JavaSparkContext(conf); //构造集合
List<Integer> numbers = Arrays.asList(1,2,3,4,5); //并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers); //使用map算子,将集合中的每个元素都乘以2
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
@Override
public Integer call(Integer v1) throws Exception {
return v1 * 2;
}
});
//打印新的RDD
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
//关闭JavasparkContext
sc.close();
}

2.filter算子

private static void filter() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("filter")
.setMaster("local"); //创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf); //模拟集合
List<Integer> numbers = Arrays.asList(1,2,3,4,5,6,7,8,9,10); //并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers); //对集合使用filter算子,过滤出集合中的偶数
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(new Function<Integer, Boolean>() {
@Override
public Boolean call(Integer v1) throws Exception {
return v1%2==0;
}
});
evenNumberRDD.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
} });
sc.close();
}

3.flatMap算子

Spark 中 map函数会对每一条输入进行指定的操作,然后为每一条输入返回一个对象;

而flatMap函数则是两个操作的集合——正是“先映射后扁平化”:

操作1:同map函数一样:对每一条输入进行指定的操作,然后为每一条输入返回一个对象

操作2:最后将所有对象合并为一个对象

private static void flatMap() {
SparkConf conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); List<String> lineList = Arrays.asList("hello you","hello me","hello world"); JavaRDD<String> lines = sc.parallelize(lineList); //对RDD执行flatMap算子,将每一行文本,拆分为多个单词
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
//在这里,传入第一行,hello,you
//返回的是一个Iterable<String>(hello,you)
@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
}); words.foreach(new VoidFunction<String>() {
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});
sc.close();
}

4.groupByKey算子

private static void groupByKey() {
SparkConf conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", 80),
new Tuple2<String, Integer>("class2", 90),
new Tuple2<String, Integer>("class1", 97),
new Tuple2<String, Integer>("class2", 89)); JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
//针对scoresRDD,执行groupByKey算子,对每个班级的成绩进行分组
//相当于是,一个key join上的所有value,都放到一个Iterable里面去了
JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();
groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() { @Override
public void call(Tuple2<String, Iterable<Integer>> t)
throws Exception {
System.out.println("class:" + t._1);
Iterator<Integer> ite = t._2.iterator();
while(ite.hasNext()) {
System.out.println(ite.next());
}
}
});
}

5.reduceByKey算子

private static void reduceByKey() {
SparkConf conf = new SparkConf()
.setAppName("reduceByKey")
.setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", 80),
new Tuple2<String, Integer>("class2", 90),
new Tuple2<String, Integer>("class1", 97),
new Tuple2<String, Integer>("class2", 89)); JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList); //reduceByKey算法返回的RDD,还是JavaPairRDD<key,value>
JavaPairRDD<String, Integer> totalScores = scores.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
}); totalScores.foreach(new VoidFunction<Tuple2<String,Integer>>() {
@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t._1 + ":" + t._2); }
});
sc.close();
}

6.sortByKey算子

private static void sortByKey() {
SparkConf conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); List<Tuple2<Integer, String>> scoreList = Arrays.asList(
new Tuple2<Integer, String>(78, "marry"),
new Tuple2<Integer, String>(89, "tom"),
new Tuple2<Integer, String>(72, "jack"),
new Tuple2<Integer, String>(86, "leo")); JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList); JavaPairRDD<Integer, String> sortedScores = scores.sortByKey();
sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {
@Override
public void call(Tuple2<Integer, String> t) throws Exception {
System.out.println(t._1 + ":" + t._2);
}
});
sc.close();
}

7.join算子
join算子用于关联两个RDD,join以后,会根据key进行join,并返回JavaPairRDD。JavaPairRDD的第一个泛型类型是之前两个JavaPairRDD的key类型,因为通过key进行join的。第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型

private static void join() {
SparkConf conf = new SparkConf()
.setAppName("join")
.setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); List<Tuple2<Integer, String>> studentList = Arrays.asList(
new Tuple2<Integer, String>(1, "tom"),
new Tuple2<Integer, String>(2, "jack"),
new Tuple2<Integer, String>(3, "marry"),
new Tuple2<Integer, String>(4, "leo")); List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
new Tuple2<Integer, Integer>(1, 78),
new Tuple2<Integer, Integer>(2, 87),
new Tuple2<Integer, Integer>(3, 89),
new Tuple2<Integer, Integer>(4, 98)); //并行化两个RDD
JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);;
JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList); //使用join算子关联两个RDD
//join以后,会根据key进行join,并返回JavaPairRDD
//JavaPairRDD的第一个泛型类型,之前两个JavaPairRDD的key类型,因为通过key进行join的
//第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型
JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores); //打印
studentScores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {
@Override
public void call(Tuple2<Integer, Tuple2<String, Integer>> t)
throws Exception {
System.out.println("student id:" + t._1);
System.out.println("student name:" + t._2._1);
System.out.println("student score:" + t._2._2);
System.out.println("==========================");
}
});
sc.close();
}

更深的方法参见:
http://blog.csdn.net/liulingyuan6/article/details/53397780
http://blog.csdn.net/liulingyuan6/article/details/53410832
https://www.2cto.com/net/201608/543044.html

spark学习(六)Java版RDD基本的基本操作的更多相关文章

  1. Hbase深入学习(六) Java操作HBase

    Hbase深入学习(六) ―― Java操作HBase 本文讲述如何用hbase shell命令和hbase java api对hbase服务器进行操作. 先看以下读取一行记录hbase是如何进行工作 ...

  2. Spark学习(一)--RDD操作

    标签(空格分隔): 学习笔记 Spark编程模型的两种抽象:RDD(Resilient Distributed Dataset)和两种共享变量(支持并行计算的广播变量和累加器). RDD RDD是一种 ...

  3. Spark学习笔记2:RDD编程

    通过一个简单的单词计数的例子来开始介绍RDD编程. import org.apache.spark.{SparkConf, SparkContext} object word { def main(a ...

  4. Spark学习(二)——RDD的设计与运行原理

    Spark的核心是建立在统一的抽象RDD之上,使得Spark的各个组件可以无缝进行集成,在同一个应用程序中完成大数据计算任务.RDD的设计理念源自AMP实验室发表的论文<Resilient Di ...

  5. spark学习(2)---RDD

    一.打印RDD内容 https://blog.csdn.net/wengyupeng/article/details/52808503 1.方法 2种方式: 1 rdd.collect().forea ...

  6. 布隆过滤器(Bloom Filter)-学习笔记-Java版代码(挖坑ing)

    布隆过滤器解决"面试题: 如何建立一个十亿级别的哈希表,限制内存空间" "如何快速查询一个10亿大小的集合中的元素是否存在" 如题 布隆过滤器确实很神奇, 简单 ...

  7. 多线程编程学习六(Java 中的阻塞队列).

    介绍 阻塞队列(BlockingQueue)是指当队列满时,队列会阻塞插入元素的线程,直到队列不满:当队列空时,队列会阻塞获得元素的线程,直到队列变非空.阻塞队列就是生产者用来存放元素.消费者用来获取 ...

  8. Spark菜鸟学习营Day1 从Java到RDD编程

    Spark菜鸟学习营Day1 从Java到RDD编程 菜鸟训练营主要的目标是帮助大家从零开始,初步掌握Spark程序的开发. Spark的编程模型是一步一步发展过来的,今天主要带大家走一下这段路,让我 ...

  9. [转]Spark学习之路 (三)Spark之RDD

    Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...

随机推荐

  1. JAVA遍历map元素

    第一种: Map map = new HashMap(); Iterator iter = map.entrySet().iterator(); while (iter.hasNext()) { Ma ...

  2. 【Linux命令大全】

    Linux常用命令大全 系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部 ...

  3. 在已编译安装nginx上动态添加模块

    一.添加nginx模块 找到安装nginx的源码根目录,如果没有的话下载新的源码 wget http://nginx.org/download/nginx-1.8.1.tar.gz 查看ngixn版本 ...

  4. 微信小程序登录对接Django后端实现JWT方式验证登录

    先上效果图 点击授权按钮后可以显示部分资料和头像,点击修改资料可以修改部分资料. 流程 1.使用微信小程序登录和获取用户信息Api接口 2.把Api获取的用户资料和code发送给django后端 3. ...

  5. Flask 系列之 构建 Swagger UI 风格的 WebAPI

    说明 操作系统:Windows 10 Python 版本:3.7x 虚拟环境管理器:virtualenv 代码编辑器:VS Code 实验 环境初始化 # 创建项目目录 mkdir helloworl ...

  6. shell 中exec、source以及bash的区别

    在bash shell中,source.exec以及sh都可以用来执行shell script,但是它们的差别在哪里呢? sh:父进程会fork一个子进程,shell script在子进程中执行 so ...

  7. 【练习】reserving.kr之easy ELF

    打开主函数: int __cdecl main() { int result; // eax@2 write(, "Reversing.Kr Easy ELF\n\n", 0x17 ...

  8. PHP-redis命令之 字符串 (strings)

    一.string (字符串) 1.set:设置键 $reids->set('mykey',111); 2.get:获取键 $redis->get('mykey'); 3.del:删除键 $ ...

  9. python知识点拾遗

    内容概要 1.__str__ 2.os.path相关方法 1.__str__ 我们先定义一个Student类,打印一个实例: class Student(object): def __init__(s ...

  10. 【02】你是如何理解 HTML 语义化的,有什么好处

    [02]你是如何理解 HTML 语义化的   01,语义化,就是通过HTML标签来表示页面包含的信息. 02,其中有HTML标签的语义化和CSS命名的语义化. 03,HTML标签语义化的的含义是:   ...