spark学习(六)Java版RDD基本的基本操作
1.map算子
private static void map() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("map")
.setMaster("local");
//创建JavasparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//构造集合
List<Integer> numbers = Arrays.asList(1,2,3,4,5);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//使用map算子,将集合中的每个元素都乘以2
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
@Override
public Integer call(Integer v1) throws Exception {
return v1 * 2;
}
});
//打印新的RDD
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
//关闭JavasparkContext
sc.close();
}
2.filter算子
private static void filter() {
//创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("filter")
.setMaster("local");
//创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
//模拟集合
List<Integer> numbers = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
//并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//对集合使用filter算子,过滤出集合中的偶数
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(new Function<Integer, Boolean>() {
@Override
public Boolean call(Integer v1) throws Exception {
return v1%2==0;
}
});
evenNumberRDD.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
sc.close();
}
3.flatMap算子
Spark 中 map函数会对每一条输入进行指定的操作,然后为每一条输入返回一个对象;
而flatMap函数则是两个操作的集合——正是“先映射后扁平化”:
操作1:同map函数一样:对每一条输入进行指定的操作,然后为每一条输入返回一个对象
操作2:最后将所有对象合并为一个对象
private static void flatMap() {
SparkConf conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> lineList = Arrays.asList("hello you","hello me","hello world");
JavaRDD<String> lines = sc.parallelize(lineList);
//对RDD执行flatMap算子,将每一行文本,拆分为多个单词
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
//在这里,传入第一行,hello,you
//返回的是一个Iterable<String>(hello,you)
@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
words.foreach(new VoidFunction<String>() {
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});
sc.close();
}
4.groupByKey算子
private static void groupByKey() {
SparkConf conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", 80),
new Tuple2<String, Integer>("class2", 90),
new Tuple2<String, Integer>("class1", 97),
new Tuple2<String, Integer>("class2", 89));
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
//针对scoresRDD,执行groupByKey算子,对每个班级的成绩进行分组
//相当于是,一个key join上的所有value,都放到一个Iterable里面去了
JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();
groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {
@Override
public void call(Tuple2<String, Iterable<Integer>> t)
throws Exception {
System.out.println("class:" + t._1);
Iterator<Integer> ite = t._2.iterator();
while(ite.hasNext()) {
System.out.println(ite.next());
}
}
});
}
5.reduceByKey算子
private static void reduceByKey() {
SparkConf conf = new SparkConf()
.setAppName("reduceByKey")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", 80),
new Tuple2<String, Integer>("class2", 90),
new Tuple2<String, Integer>("class1", 97),
new Tuple2<String, Integer>("class2", 89));
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
//reduceByKey算法返回的RDD,还是JavaPairRDD<key,value>
JavaPairRDD<String, Integer> totalScores = scores.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
totalScores.foreach(new VoidFunction<Tuple2<String,Integer>>() {
@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t._1 + ":" + t._2);
}
});
sc.close();
}
6.sortByKey算子
private static void sortByKey() {
SparkConf conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<Integer, String>> scoreList = Arrays.asList(
new Tuple2<Integer, String>(78, "marry"),
new Tuple2<Integer, String>(89, "tom"),
new Tuple2<Integer, String>(72, "jack"),
new Tuple2<Integer, String>(86, "leo"));
JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);
JavaPairRDD<Integer, String> sortedScores = scores.sortByKey();
sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {
@Override
public void call(Tuple2<Integer, String> t) throws Exception {
System.out.println(t._1 + ":" + t._2);
}
});
sc.close();
}
7.join算子
join算子用于关联两个RDD,join以后,会根据key进行join,并返回JavaPairRDD。JavaPairRDD的第一个泛型类型是之前两个JavaPairRDD的key类型,因为通过key进行join的。第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型
private static void join() {
SparkConf conf = new SparkConf()
.setAppName("join")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<Integer, String>> studentList = Arrays.asList(
new Tuple2<Integer, String>(1, "tom"),
new Tuple2<Integer, String>(2, "jack"),
new Tuple2<Integer, String>(3, "marry"),
new Tuple2<Integer, String>(4, "leo"));
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
new Tuple2<Integer, Integer>(1, 78),
new Tuple2<Integer, Integer>(2, 87),
new Tuple2<Integer, Integer>(3, 89),
new Tuple2<Integer, Integer>(4, 98));
//并行化两个RDD
JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);;
JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
//使用join算子关联两个RDD
//join以后,会根据key进行join,并返回JavaPairRDD
//JavaPairRDD的第一个泛型类型,之前两个JavaPairRDD的key类型,因为通过key进行join的
//第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型
JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores);
//打印
studentScores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {
@Override
public void call(Tuple2<Integer, Tuple2<String, Integer>> t)
throws Exception {
System.out.println("student id:" + t._1);
System.out.println("student name:" + t._2._1);
System.out.println("student score:" + t._2._2);
System.out.println("==========================");
}
});
sc.close();
}
更深的方法参见:
http://blog.csdn.net/liulingyuan6/article/details/53397780
http://blog.csdn.net/liulingyuan6/article/details/53410832
https://www.2cto.com/net/201608/543044.html
spark学习(六)Java版RDD基本的基本操作的更多相关文章
- Hbase深入学习(六) Java操作HBase
Hbase深入学习(六) ―― Java操作HBase 本文讲述如何用hbase shell命令和hbase java api对hbase服务器进行操作. 先看以下读取一行记录hbase是如何进行工作 ...
- Spark学习(一)--RDD操作
标签(空格分隔): 学习笔记 Spark编程模型的两种抽象:RDD(Resilient Distributed Dataset)和两种共享变量(支持并行计算的广播变量和累加器). RDD RDD是一种 ...
- Spark学习笔记2:RDD编程
通过一个简单的单词计数的例子来开始介绍RDD编程. import org.apache.spark.{SparkConf, SparkContext} object word { def main(a ...
- Spark学习(二)——RDD的设计与运行原理
Spark的核心是建立在统一的抽象RDD之上,使得Spark的各个组件可以无缝进行集成,在同一个应用程序中完成大数据计算任务.RDD的设计理念源自AMP实验室发表的论文<Resilient Di ...
- spark学习(2)---RDD
一.打印RDD内容 https://blog.csdn.net/wengyupeng/article/details/52808503 1.方法 2种方式: 1 rdd.collect().forea ...
- 布隆过滤器(Bloom Filter)-学习笔记-Java版代码(挖坑ing)
布隆过滤器解决"面试题: 如何建立一个十亿级别的哈希表,限制内存空间" "如何快速查询一个10亿大小的集合中的元素是否存在" 如题 布隆过滤器确实很神奇, 简单 ...
- 多线程编程学习六(Java 中的阻塞队列).
介绍 阻塞队列(BlockingQueue)是指当队列满时,队列会阻塞插入元素的线程,直到队列不满:当队列空时,队列会阻塞获得元素的线程,直到队列变非空.阻塞队列就是生产者用来存放元素.消费者用来获取 ...
- Spark菜鸟学习营Day1 从Java到RDD编程
Spark菜鸟学习营Day1 从Java到RDD编程 菜鸟训练营主要的目标是帮助大家从零开始,初步掌握Spark程序的开发. Spark的编程模型是一步一步发展过来的,今天主要带大家走一下这段路,让我 ...
- [转]Spark学习之路 (三)Spark之RDD
Spark学习之路 (三)Spark之RDD https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...
随机推荐
- kafka启动报错&问题解决
kafka启动报错&问题解决 一早上班,就收到运维同事通知说有一台物理机宕机,导致虚拟机挂了.只得重启kafka服务器. 1.启动 启动zookeeper bin/zkServer.sh st ...
- 利用js实现图片展开与收缩
1.元素居中放大: 1>除了要改变元素的宽高以外,还要改变元素的定位(left,top),如果图片放大一倍,那么位移放大宽高的一半. 2>元素必须是定位的.所以,在css中设置为浮动布局, ...
- 关于reg的思考
对于用于always中的标识符一般声明其数据类型为reg,但不一定都是代表触发器. 1.always中组合逻辑.reg跟时序无关. 2.alwasy中时序逻辑.reg表示触发器. 对于组合逻辑设计 1 ...
- linux下ls出现文件的后缀有@,* ,/之类的解释
ls -Fafptool* img_maker* lzcmp@ lzfgrep@ lzma* lzmore* node-pre-gyp@bower@ ...
- set的应用:UVa10815-Andy's First Dictionary
Andy's First Dictionary Andy, 8, has a dream - he wants to produce his very own dictionary. This is ...
- lnmp环境运行laravel open_basedir restriction in effect 问题
环境配置:centos 7 : php 7.1.5 Warning: require(): open_basedir restriction in effect. File(/home/wwwroot ...
- redis配置cluster分布式集群
#下载最新的redis5. wget http://download.redis.io/releases/redis-5.0.3.tar.gz .tar.gz cd redis- make make ...
- skkyk:题解 洛谷P3865 【【模板】ST表】
我不会ST表 智推推到这个题 发现标签中居然有线段树..? 于是贸然来了一发线段树 众所周知,线段树的查询是log(n)的 题目中"请注意最大数据时限只有0.8s,数据强度不低,请务必保证你 ...
- Python开发:网络编程
Python 提供了两个级别访问的网络服务.: 低级别的网络服务支持基本的 Socket,它提供了标准的 BSD Sockets API,可以访问底层操作系统Socket接口的全部方法. 高级别的网络 ...
- luogu1963 [NOI2009]变换序列
#include <iostream> #include <cstring> #include <cstdio> using namespace std; int ...