Sightseeing trip
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6647   Accepted: 2538   Special Judge

Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

Output

There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20

Sample Output

1 3 5 2

Source

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=105;
const int INF=1e6;//改成1e9就不对了
int dis[MAXN][MAXN],mp[MAXN][MAXN];
int R[MAXN][MAXN],path[MAXN];
int N,M,len;
int u,v,w;
int cnt=0;
void Init()
{
for(int i=0;i<=N;i++)
for(int j=0;j<=N;j++)
dis[i][j]=INF,R[i][j]=0;
cnt=0;
}
void Path(int s,int t)
{
if(R[s][t])
{
Path(s,R[s][t]);
Path(R[s][t],t);
}
else
path[++cnt]=t;
}
void Floyd()
{
len=INF;
for(int k=1;k<=N;k++)
{
    //判断负环
for(int i=1;i<k;i++)
for(int j=i+1;j<k;j++)
{
if(len>dis[i][j]+mp[i][k]+mp[k][j])
{
len=dis[i][j]+mp[i][k]+mp[k][j];
cnt=0;
path[++cnt]=i;
Path(i,j);
path[++cnt]=k; }
}
     //求最短路
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
{
if(dis[i][j]>dis[i][k]+dis[k][j])
{
dis[i][j]=dis[i][k]+dis[k][j];
R[i][j]=k;
}
}
}
}
int main ()
{
while(~scanf("%d%d",&N,&M))
{
Init();
for(int i=1;i<=M;i++)
{
scanf("%d%d%d",&u,&v,&w);
if(dis[u][v]>w)//记录重边
{
dis[u][v]=w;
dis[v][u]=w;
}
}
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
mp[i][j]=dis[i][j];//mp判断环的时候要用到
Floyd();
if(len==INF)
printf("No solution.\n");
else
{
for(int i=1;i<=cnt;i++)
{
if(i!=cnt)
printf("%d ",path[i]);
else
printf("%d\n",path[i]);
}
}
}
return 0;
}

  

POJ1734/Floyd求最小环的更多相关文章

  1. 算法复习——floyd求最小环(poj1734)

    题目: 题目描述 N 个景区,任意两个景区之间有一条或多条双向的路来连接,现在 Mr.Zeng 想找一条旅游路线,这个路线从A点出发并且最后回到 A 点,假设经过的路线为 V1,V2,....VK,V ...

  2. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

  3. 2017"百度之星"程序设计大赛 - 资格赛【1001 Floyd求最小环 1002 歪解(并查集),1003 完全背包 1004 01背包 1005 打表找规律+卡特兰数】

    度度熊保护村庄 Accepts: 13 Submissions: 488 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3276 ...

  4. Floyd求最小环!(转载,非原创) 附加习题(原创。)HDU-1599

    //Floyd 的 改进写法可以解决最小环问题,时间复杂度依然是 O(n^3),储存结构也是邻接矩阵 int mincircle = infinity; Dist = Graph; ;k<nVe ...

  5. 2018.09.15 hdu1599find the mincost route(floyd求最小环)

    传送门 floyd求最小环的板子题目. 就是枚举两个相邻的点求最小环就行了. 代码: #include<bits/stdc++.h> #define inf 0x3f3f3f3f3f3f ...

  6. 【BZOJ 1027】 (凸包+floyd求最小环)

    [题意] 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新的合金.新的合金 ...

  7. floyd求最小环 模板

    http://www.cnblogs.com/Yz81128/archive/2012/08/15/2640940.html 求最小环 floyd求最小环 2011-08-14 9:42 1 定义: ...

  8. CF 1206D - Shortest Cycle Floyd求最小环

    Shortest Cycle 题意 有n(n <= 100000)个数字,两个数字间取&运算结果大于0的话连一条边.问图中的最小环. 思路 可以发现当非0数的个数很大,比如大于200时, ...

  9. 弗洛伊德Floyd求最小环

    模板: #include<bits/stdc++.h> using namespace std; ; const int INF = 0xffffff0; ]; void Solve(in ...

随机推荐

  1. mysql导出数据表结构,必须退出mysql命令.重新使用msyqldump命令

    只导出数据库中所有表结构(-d 减去数据) 导出所有表结构和数据 mysqldump -uroot --default-character-set=utf8 -p123-d必须空格good>H: ...

  2. [SOJ] 图的广度优先搜索

    Time Limit: 1sec    Memory Limit:256MB Description 读入图的邻接矩阵以及一个顶点的编号(图中顶点的编号为从1开始的连续正整数.顶点在邻接矩阵的行和列上 ...

  3. openwrt源码下载地址(镜像)

    与openwrt.org的源码svn路径仅仅多了一个.cn svn://svn.openwrt.org.cn/openwrt/branches/backfiresvn://svn.openwrt.or ...

  4. C# 将List中的数据导入csv文件中

    //http://www.cnblogs.com/mingmingruyuedlut/archive/2013/01/20/2849906.html C# 将List中的数据导入csv文件中   将数 ...

  5. 屏幕录像专家2014 v0318 免费版

    软件名称: 屏幕录像专家2014软件语言: 简体中文授权方式: 免费试用运行环境: Win8 / Win7 / Vista / WinXP软件大小: 7.9MB图片预览: 软件简介:屏幕录像专家201 ...

  6. mysql创建计算列

    mysql> create table t(id int auto_increment not null,c1 int,c2 int,c3 int as (c1+c2),primary key( ...

  7. The server instance Witness rejected configure request; read its error log file for more information. The reason 1427, and state 31, can be of use for

    数据库服务器做了镜像之后,发现有错误信息 The server instance Witness rejected configure request; read its error log file ...

  8. 调用Lua出错

    错误提示:Could not load file or assembly 'lua51' or one of its dependencies. An attempt was made to load ...

  9. Java--重载与重写

    父类(Parent): public class Parent { public String name = "parent 父类属性"; public void say(){ S ...

  10. TCP小结

    TCP/IP协议实现了不同主机,不同操作系统之间信息交流.由4层构成,从上往下依次为: 1.应用层,包括http,ftp等协议,用于实现某一项具体的功能. 2.传输层,包括TCP和UDP,一个可靠,一 ...