Cochran-Armitage trend test是我们常说的趋势卡方检验,一般是针对基因型的2*3列联表的。譬如说三种基因型,如果按照某一个allele来看,可以有0、1、2个拷贝,是有序的,我们要观察随着allele数目的增多,发病的比例是否有差异,那么就要用Trend test。而Pearson卡方则不考虑该有序关系,只是简单的比较两个组中某一个allele的频率分布有无差异。

Cochran–Armitage 趋势检验也称 R*2列联表资料线性趋势检验,其目的是说明某一事件发生率是否随着原因变量不同水平的变化而呈线性趋势。

一定要用Cochran-Armitage trend test,可以用person卡方代替吗?
他们之间因为 基因模型的不确定,所以各有优劣。目前,Cochran-Armitage trend test用得比较多。

一般都是用什么方法确定一个基因模型呢?
在众多的遗传变异中,仅极个别确定了。绝大多数都无法确定,更多的文章中,在分析中把 各种可能的模型(显性,隐性,加性,乘积模型等),都分析了一遍。

The Cochran-Armitage test for trend, is used in categorical data analysis when the aim is to assess for the presence of an association between a variable with two categories and a variable with k categories.

It modifies the chi-square test to incorporate a suspected ordering in the effects of the k categories of the second variable. For example, doses of a treatment can be ordered as 'low', 'medium', and 'high', and we may suspect that the treatment benefit cannot become smaller as the dose increases. The trend test is often used as a genotype-based test for case-control genetic association study.

The trend test is applied when the data take the form of a 2 × k contingency table. For example, if k = 3 we have

  B=1 B=2 B=3
A=1 N11 N12 N13
A=2 N21 N22 N23

This table can be completed with the marginal totals of the two variables

  B=1 B=2 B=3 Sum
A=1 N11 N12 N13 R1
A=2 N21 N22 N23 R2
Sum C1 C2 C3 N

where R1 = N11 + N12 + N13, and C1 = N11 + N21, etc.

The trend test statistic is

where the ti are weights, and the difference N1iR2 −N2iR1 can be seen as the difference between N1i and N2i after reweighting the rows to have the same total.

The hypothesis of no association (the null hypothesis) can be expressed as:

.

The weights ti can be chosen such that the trend test becomes locally most powerful for detecting particular types of associations. For example, if k = 3 and we suspect that B = 1 and B = 2 have similar frequencies (within each row), but that B = 3 has a different frequency, then the weights t = (1,1,0) should be used. If we suspect a linear trend in the frequencies, then the weights t = (0,1,2) should be used. These weights are also often used when the frequencies are suspected to change monotonically with B, even if the trend is not necessarily linear

Application to genetics

Suppose that there are three possible genotype at some locus, and we refer to these as aa, Aa and AA. The distribution of genotype counts can be put in a 2 × 3 contingency table. For example, consider the following data, in which the genotype frequencies vary linearly in the cases and are constant in the controls:

  Genotype aa Genotype Aa Genotype AA Sum
Controls           20           20           20  60
Cases           10           20           30 60
Sum           30           40           50 120

In genetics applications, the weights are selected according to the suspected mode of inheritance. For example, in order to test whether allel a is dominant over allele A, the choice t = (1, 1, 0) is locally optimal. To test whether allele a is recessive to allele A, the optimal choice is t = (0, 1, 1). To test whether alleles a and A are codominant, the choice t = (0, 1, 2) is locally optimal. For complex disease, the underlying genetic model is often unknown. In GWAS, the additive (or codominant) version of the test is often used.

In the numerical example, the standardized test statistics for various weight vectors are

Weights Standardized test statistic
1,1,0 1.85
0,1,1 -2.1
0,1,2 -2.3

and the Pearson chi-square test gives a standardized test statistic of 2. Thus, we obtain a stronger significance level if the weights corresponding to additive (codominant) inheritance are used. Note that for the significance level to give a p-value with the usual probabilistic interpretation, the weights must be specified before examining the data, and only one set of weights may be used.

cocharan-Armitage trend test的更多相关文章

  1. Armitage主屏幕说明与命令行启动

    (1)我们将Armitage主屏幕标注为A.B和C A:该区域显示预配置的模块.您可以在模块列表下面的文本框中输入要查找的模块进行查找. B:该区域显示我们可以进行漏洞测试的活跃主机. C:该区域显示 ...

  2. Armitage初始化

    Kali2.0 Armitage初始化步骤如下 (1)点击页面的Armitage按钮 (2)提示Metasploit RPC server is not running,是否启动该服务,选择是 (3) ...

  3. 基于Armitage的MSF自动化集成攻击实践

    基于Armitage的MSF自动化集成攻击实践 目录 0x01 实践环境 0x02 预备知识 0x03 Armitage基础配置 0x04 Nmap:Armitage下信息搜集与漏洞扫描 0x05 A ...

  4. Cobaltstrike、armitage联动

    i 春秋作家:fengzi 原文来自:Cobaltstrike.armitage联动 在使用Cobaltstrike的时候发现他在大型或者比较复杂的内网环境中,作为内网拓展以及红队工具使用时拓展能力有 ...

  5. Armitage攻击winxp——P201421410029

    实验简介 实验所属系列: 安全工具使用 实验对象:本科/专科信息安全专业 相关课程及专业: linux基础.网络安全 实验类别: 实践实验类 预备知识 Armitage基本介绍       Armit ...

  6. 如何激活 Trend Micro Deep Security Agent

    Deep Security 即服务包括反恶意软件保护.防火墙.入侵防御系统和完整性监视.Trend Micro Deep Security Agent (DSA) 可以配合 Deep Security ...

  7. Kail Linux渗透测试之测试工具Armitage

    Kali Linux下的Armitage是一个很强大的渗透工具,图形化操作页面,但我们把kali linux装在虚拟机里面,然后再启动armitage就会出现一个error,他会给你一个message ...

  8. Metasploit的armitage初步使用

      armitage的启动 root@kali:~# armitage 别急,过会儿就好了 .  等扫描完会弹出一个框框然后会多出目标的图标比如目标是打印机

  9. cobalt strike笔记-CS与MSF,Armitage,Empire互转shell

    0x01 Metasploit派生shell给Cobaltstrike 生成木马: msfvenom -p windows/meterpreter/reverse_tcp -e x86/shikata ...

随机推荐

  1. hprof网络连接

    demo/jvmti/hprof/tt/manual.htmlnc -l -k 12321 java -agentpath:./demo/jvmti/hprof/lib/libhprof.so=net ...

  2. 过滤字符串html标签方法

    过滤字符串html标签方法,如果输入的过滤标签为“*”,那么给字符串加上p标签 public static string noTagHtml(string str, string tagname) { ...

  3. zf-关于统计分析表单导出(写这个的 太麻烦了)

    一个类里面写了2个一样的方法 如果是我 会重复利用 而不是这样写 今天改bug的时候我把一个类修改了2次 差点以为进错了类

  4. hudson配置教程

    Hudson配置教程 hudson是个优 秀的开源工具,可惜是小日本开发的.这点不爽.拿过来用吧.我们公司(Qisda)的用途是 用来晚上定时的抓Android的代码,然后编译,保存img文件,然后根 ...

  5. PS2鼠标+LCD12864实验(调试未成功)

    此试验我一人调试许久都未成功,但发送ff时,读出来的数据确是对的,一开始让我窃喜,但发送f4时,读出来的数据确是错的,哎让苦恼啊,能力有限,只能先暂时就这样吧,那位什么还要贴出来呢,有两个原因: 1. ...

  6. 单源最短路-dijkstra算法(未优化)

    bool used[maxn]; int g[maxn][maxn]; // 边未联系的填充为INF int d[maxn]; void dijkstra(int s){ memset(g,false ...

  7. 那些学些网址_jquery初学知识

    http://www.cnblogs.com/mingmingruyuedlut/archive/2011/10/18/2216553.html(ajax)http://www.enet.com.cn ...

  8. Android音频系统之AudioFlinger(二)

    1.1.1 音频设备的管理 虽然AudioFlinger实体已经成功创建并初始化,但到目前为止它还是一块静态的内存空间,没有涉及到具体的工作. 从职能分布上来讲,AudioPolicyService是 ...

  9. Gson通过借助TypeToken获取泛型参数的类型的方法

    最近在使用Google的Gson包进行Json和Java对象之间的转化,对于包含泛型的类的序列化和反序列化Gson也提供了很好的支持,感觉有点意思,就花时间研究了一下. 由于Java泛型的实现机制,使 ...

  10. Python核心编程第二版(中文).pdf 目录整理

    python核心编程目录 Chapter1:欢迎来到python世界!-页码:7 1.1什么是python 1.2起源  :罗萨姆1989底创建python 1.3特点 1.3.1高级 1.3.2面向 ...