bzoj1061 志愿者招募
bzoj1061 志愿者招募
Description
申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难
题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要
Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用
是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这
并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。
Input
第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负
整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了
方便起见,我们可以认为每类志愿者的数量都是无限多的。
Output
仅包含一个整数,表示你所设计的最优方案的总费用。
Sample Input
3 3
2 3 4
1 2 2
2 3 5
3 3 2
Sample Output
14
HINT
1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。
解法
此题真是神坑,根据流量平衡可以得出解法。
我们设第\(i\)类志愿者用了\(X_i\)人,\(Y \ge 0\),可以得出:
\(\sum X_i = Y_j + A_j (S_i \le j \le T_i) \tag{1}\)
考虑第\(i\)天与第\(i+1\)天:
\(\sum X_i = Y_{j+1} + A_{j+1} (S_i \le j + 1 \le T_i) \tag{2}\)
1,2做差可得:
\(\sum_{T_i=j} X_i - \sum_{S_i=j+1} X_i = Y_j - Y_{j+1} + A_j - A_{j+1}\)
模仿流量平衡方程,我们就可以建立费用流模型,之后用朴素的mcf都可以过。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define inf 0x3f3f3f3f
typedef int edge[50003], vert[1003];
edge nt, c, w, to;
vert d, hd, q, from;
int ce, T;
bool inq[1003];
inline void adde(int x, int y, int z, int v) {
to[ce] = y, nt[ce] = hd[x];
c[ce] = z, w[ce] = v;
hd[x] = ce++;
}
#define nxt(i) (++(i)>=1003?i=0:i)
inline bool SPFA() {
static int u, v, i, l, r;
for (i = 1; i <= T; ++i) d[i] = inf;
d[0] = 0; q[0] = 0; from[0] = -1;
for (l = 0, r = 1; l ^ r; ) {
u = q[l]; nxt(l);
for (i = hd[u]; ~i; i = nt[i])
if (c[i] && d[v = to[i]] > w[i] + d[u]) {
d[v] = w[i] + d[u];
from[v] = i;
if (!inq[v]) inq[v] = true, q[r] = v, nxt(r);
}
inq[u] = false;
}
return d[T] < inf;
}
inline int mcf() {
static int f, e, ret;
for (f = inf, e = from[T], ret = 0; ~e; e = from[to[e^1]]) f = min(f, c[e]), ret += w[e];
for (e = from[T]; ~e; e = from[to[e^1]]) c[e] -= f, c[e^1] += f;
return f * ret;
}
int main() {
int n, m, i, x, y, v;
memset(hd, -1, sizeof hd);
scanf("%d%d", &n, &m);
T = n + 2;
for (y = 0, i = 1; i <= n; ++i) {
scanf("%d", &x);
v = x - y;
y = x;
if (v > 0) adde(0, i, v, 0), adde(i, 0, 0, 0);
else adde(i, T, -v, 0), adde(T, i, 0, 0);
adde(i + 1, i, inf, 0), adde(i, i + 1, 0, 0);
}
adde(n + 1, T, y, 0), adde(T, n + 1, 0, 0);
while (m--) {
scanf("%d%d%d", &x, &y, &v);
++y;
adde(x, y, inf, v), adde(y, x, 0, -v);
}
v = 0;
while (SPFA())
v += mcf();
printf("%d\n", v);
return 0;
}
其实我们可以发现1,2就是线性规划的标准形式,直接单纯形法。
#include <cmath>
#include <cstdio>
inline int gi() {
static int a; static char c;
while ((c = getchar()) < '0'); a = c - '0';
while ('-' < (c = getchar())) a = (a << 3) + (a << 1) + c - '0';
return a;
}
const int N = 1003, M = 10003;
const double inf = 1e9, eps = 1e-9;
int n, m;
double a[M][N], b[M], c[N], v;
void pivot(int l, int e) {
static int i, j;
b[l] /= a[l][e];
for (j = 1; j <= n; ++j) if (j ^ e) a[l][j] /= a[l][e];
a[l][e] = 1 / a[l][e];
for (i = 1; i <= m; ++i)
if ((i ^ l) && fabs(a[i][e]) > 0) {
b[i] -= a[i][e] * b[l];
for (j = 1; j <= n; ++j) if (j ^ e) a[i][j] -= a[i][e] * a[l][j];
a[i][e] = -a[i][e] * a[l][e];
}
v += c[e] * b[l];
for (j = 1; j <= n; ++j) if (j ^ e) c[j] -= c[e] * a[l][j];
c[e] = -c[e] * a[l][e];
}
double simplex() {
int e, l, i;
double mn;
while (true) {
for (e = 1; e <= n; ++e) if(c[e] > eps) break;
if (e > n) return v;
for (i = 1, mn = inf; i <= m; ++i)
if (a[i][e] > eps && mn > b[i] / a[i][e]) mn = b[i] / a[i][e], l = i;
if (mn == inf) return inf;
pivot(l, e);
}
}
int main() {
int i, j, s, t;
n = gi(), m = gi();
for (i = 1; i <= n; ++i) c[i] = gi();
for (i = 1; i <= m; ++i) {
s = gi(), t = gi();
for (j = s; j <= t; ++j) a[i][j] = 1;
b[i] = gi();
}
printf("%d", (int)(simplex() + 0.5));
return 0;
}
bzoj1061 志愿者招募的更多相关文章
- BZOJ-1061 志愿者招募 线性规划转最小费用最大流+数学模型 建模
本来一眼建模,以为傻逼题,然后发现自己傻逼...根本没想到神奇的数学模型..... 1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 ...
- [NOI2008][bzoj1061] 志愿者招募 [费用流+巧妙的建图]
题面 传送门 思路 引入:网络流? 看到这道题,第一想法是用一个dp来完成决策 但是,显然这道题的数据并不允许我们进行dp,尤其是有10000种志愿者的情况下 那么我们就要想别的办法来解决: 贪心?这 ...
- [NOI2008] [bzoj1061] 志愿者招募
还是一道费用流的题目.话不多说,进入正题. 题意:给定n个点和m种从l到r覆盖一层的费用,求满足所有点的覆盖层数都大等于权值的最小费用 分析:要做到区间修改,看似比较麻烦. 用差分把区间修改变成单点修 ...
- [BZOJ1061][Noi2008]志愿者招募
[BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...
- 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募
线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...
- 【BZOJ1061】【NOI2008】志愿者招募
[BZOJ1061][NOI2008]志愿者招募 题面 BZOJ 题解 我们设每类志愿者分别招募了\(B[i]\)个 那么,我们可以得到一系列的方程 \[\sum_{S[i]\leq x\leq T[ ...
- 【BZOJ1061/3265】[Noi2008]志愿者招募/志愿者招募加强版 单纯形法
[BZOJ1061][Noi2008]志愿者招募 Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募 ...
- bzoj1061: [Noi2008]志愿者招募
线性规划与费用流.http://www.cnblogs.com/iiyiyi/p/5616080.html.数组范围开错了!!!然后2.31-1=0x7fffffff!=0x7f7f7f7f. 开始以 ...
- 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5291 Solved: 3173[Submit][Stat ...
随机推荐
- PHP之音乐ID3扩展
不知道你有没有这样的经历,一些从网上下载的MP3音乐,文件名明明是01.02这样的序号,但播放时却能显示出歌曲的正确名称来,是不是有点奇妙? 这其实都是ID3在暗中相助 ID3,一般是位于一个mp3文 ...
- queue(),dequeue()
这两个方法,一个是往里面添加队列,一个是执行队列 也是分静态方法和实例方法, 同样,实例方法最后调用静态方法 源码主要分析一下延迟delay方法,如何起作用的,写的有点仓促,先记录一下 在这里参照了网 ...
- shell查看进程
用shell脚本监控进程是否存在 不存在则启动的实例,先上代码干货: #!/bin/shps -fe|grep processString |grep -v grepif [ $? -ne 0 ]th ...
- MyBatis中Like语句使用方式
oracle数据库: SELECT * FROM user WHERE name like CONCAT('%',#{name},'%') 或 SELECT * FROM user WHERE nam ...
- linux(视频学习)2
第二部分(javaee的开发环境的搭建): 1. 安装jdk的过程: 安装ios的镜像文件,挂载到/mnt目录下.挂载: mount /mnt/cdrom卸载: umount /mnt/cdrom ...
- php 版本比较
判断当前运行的 PHP 版本是否高于或等于你提供的版本号. function is_php($version) { static $_is_php; $version = (string) $vers ...
- php ajax 下拉加载数据
视图 <html> <head> <title>健康知识</title> <script type="text/javascript&q ...
- combo扩展:禁止手工改变输入框的值
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- Android中Edittext的属性
//此为转载别人的,挺不错的 1.EditText输入的文字为密码形式的设置 (1)通过.xml里设置: 把该EditText设为:android:password="true" ...
- 视频录制SurfaceView
package com.bw.videorecorder; import java.io.File;import java.io.IOException; import android.media.M ...