LeetCode OJ 84. Largest Rectangle in Histogram
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area = 10 unit.
For example,
Given heights = [2,1,5,6,2,3],
return 10.
【题目分析】
题目很容易理解,给定一个非负数组代表的直方图,求出图中包含的最大的矩形的面积。
【思路】
1.这题的一个基本思想是以每一个bar为最低点,向左右遍历直到遇到比他小的bar或边界。这样就能找到一个此bar为最低点的矩形面积。遍历所有的bar之后即可找到最大的矩形面积。但是向左右遍历寻找比他小的bar的时间复杂度是O(n),在加上遍历一遍所有的bar,总的时间复杂度将为O(n*n),是无法通过所有数据的。我们在水平方向任意画一条线,如果有条和这条线相交,我们找出相交的矩阵中最大的那个。示例如下:
当线的高度是2时,相交的矩阵有两个,较大的那个面积是8。

当线的高度是3时,相交的矩阵有两个,较大的那个面积时6。

当线的高度是5时,相交的矩阵有一个,面积是10。

重复上面的步骤,找到的最大值是10.这个过程很简单,只需要遍历所有可能出现的高度,然后找到所有出现的矩阵中面积最大的那一个。但是这个过程的算法复杂度较高,为O(N2).
java代码:
public class Solution {
public int largestRectangleArea(int[] heights) {
if(heights.length == 0) return 0;
if(heights.length == 1) return heights[0];
int curlen = 0;
int maxS = 0, curS = 0;
for(int i = 0; i < heights.length; i++){
curlen = heights[i];
curS = 0;
for(int j = 0; j < heights.length; j++){
if(heights[j] >= preminlen) curS += preminlen;
else{
maxS = Math.max(curS, maxS);
curS = 0;
}
}
maxS = Math.max(curS, maxS);
}
return maxS;
}
}
2. 我们需要寻找一种时间复杂度更低的寻找一个bar左右边界的算法。在网上流传了一个设计极其巧妙的方法,借助一个stack可以将时间复杂度降为O(n)。
这种算法的思想是维护一个递增的栈,这个栈保存了元素在数组中的位置。 这样在栈中每一个左边的bar都比本身小,所以左边就天然有界了,也就是左边界就是左边的一个bar。遍历一遍height数组,在将height数组入栈的时候,如果当前元素height[i]比栈顶元素小,则我们又找到了栈顶元素的右边界。因此我们在此时就可以计算以栈顶元素为最低bar的矩形面积了,因为左右边界我们都已经找到了,而且是在O(1)的时间复杂度内找到的。然后就可以将栈顶元素出栈了。这样每出栈一个元素,即计算以此元素为最低点的矩形面积。当最终栈空的时候我们就计算出了以所有bar为最低点的矩形面积。为保证让所有元素都出栈,我们在height数组最后加一个0,因为一个元素要出栈必须要遇到一个比他小的元素,也就是右边界。
- 如果已知height数组是升序的,应该怎么做?
比如1,2,5,7,8
那么就是(1*5) vs. (2*4) vs. (5*3) vs. (7*2) vs. (8*1)
也就是max(height[i]*(size-i))
- 使用栈的目的就是构造这样的升序序列,按照以上方法求解。
但是height本身不一定是升序的,应该怎样构建栈?
比如2,1,5,6,2,3
(1)2进栈。s={2}, result = 0
(2)1比2小,不满足升序条件,因此将2弹出,并记录当前结果为2*1=2。
将2替换为1重新进栈。s={1,1}, result = 2
(3)5比1大,满足升序条件,进栈。s={1,1,5},result = 2
(4)6比5大,满足升序条件,进栈。s={1,1,5,6},result = 2
(5)2比6小,不满足升序条件,因此将6弹出,并记录当前结果为6*1=6。s={1,1,5},result = 6
2比5小,不满足升序条件,因此将5弹出,并记录当前结果为5*2=10(因为已经弹出的5,6是升序的)。s={1,1},result = 10
2比1大,将弹出的5,6替换为2重新进栈。s={1,1,2,2,2},result = 10
(6)3比2大,满足升序条件,进栈。s={1,1,2,2,2,3},result = 10
栈构建完成,满足升序条件,因此按照升序处理办法得到上述的max(height[i]*(size-i))=max{3*1, 2*2, 2*3, 2*4, 1*5, 1*6}=8<10
综上所述,result=10
java代码:
public class Solution {
public int largestRectangleArea(int[] height) {
int len = height.length;
Stack<Integer> s = new Stack<Integer>();
int maxArea = 0;
for(int i = 0; i <= len; i++){
int h = (i == len ? 0 : height[i]);
if(s.isEmpty() || h >= height[s.peek()]){
s.push(i);
}else{
int tp = s.pop();
maxArea = Math.max(maxArea, height[tp] * (s.isEmpty() ? i : i - 1 - s.peek()));
i--;
}
}
return maxArea;
}
}
LeetCode OJ 84. Largest Rectangle in Histogram的更多相关文章
- 【LeetCode】84. Largest Rectangle in Histogram 柱状图中最大的矩形(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调栈 日期 题目地址: https://leetc ...
- 【LeetCode】84. Largest Rectangle in Histogram
Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...
- 【一天一道LeetCode】#84. Largest Rectangle in Histogram
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given n ...
- 【LeetCode】84. Largest Rectangle in Histogram——直方图最大面积
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- 【Leetcode】84. Largest Rectangle in Histogram 85. Maximal Rectangle
问题描述: 84:直方图最大面积. 85:0,1矩阵最大全1子矩阵面积. 问题分析: 对于84,如果高度递增的话,那么OK没有问题,不断添加到栈里,最后一起算面积(当然,面积等于高度h * disPo ...
- LeetCode 84. Largest Rectangle in Histogram 单调栈应用
LeetCode 84. Largest Rectangle in Histogram 单调栈应用 leetcode+ 循环数组,求右边第一个大的数字 求一个数组中右边第一个比他大的数(单调栈 Lee ...
- 84. Largest Rectangle in Histogram
https://www.cnblogs.com/grandyang/p/4322653.html 1.存储一个单调递增的栈 2.如果你不加一个0进去,[1]这种情况就会输出结果0,而不是1 3.单调递 ...
- 刷题84. Largest Rectangle in Histogram
一.题目说明 题目84. Largest Rectangle in Histogram,给定n个非负整数(每个柱子宽度为1)形成柱状图,求该图的最大面积.题目难度是Hard! 二.我的解答 这是一个 ...
- 84. Largest Rectangle in Histogram *HARD* -- 柱状图求最大面积 85. Maximal Rectangle *HARD* -- 求01矩阵中的最大矩形
1. Given n non-negative integers representing the histogram's bar height where the width of each bar ...
随机推荐
- 系统不识别某些Android设备:adb devices不显示问题解决
1.获取厂商android设备ID 电脑连接android设备,然后执行命令: system_profiler SPUSBDataType 2.将厂商ID添加到 adb_usb.ini 文件中 Mac ...
- XTU 1250 Super Fast Fourier Transform
$2016$长城信息杯中国大学生程序设计竞赛中南邀请赛$H$题 排序,二分. 对$a$数组,$b$数组从小到大进行排序. 统计每一个$a[i]$作为较大值的时候与$b[i]$对答案的贡献.反过来再统计 ...
- wpf 遍历listview 时 传入指定类型 得到指定类型控件info
private ChildType FindVisualChild<ChildType>(DependencyObject obj) where ChildType : Dependenc ...
- UltraEdit-32文本编辑器软件 23.20.0.28 中文版
软件名称: UltraEdit-32文本编辑器软件软件语言: 简体中文授权方式: 共享软件运行环境: Win 32位/64位软件大小: 21.5MB图片预览: 软件简介:UltraEdit 是一个功能 ...
- Python基础(十一)-面向对象
三种编程范式: 1.函数式编程:函数指数学意义上的函数 由于命令式编程语言也可以通过类似函数指针的方式来实现高阶函数,函数式的最主要的好处主要是不可变性带来的.没有可变的状态,函数就是引用透明(Ref ...
- Framebuffer原理、使用、测试系列文章,非常好的资料,大家一起学习
转载:http://blog.csdn.net/tju355/article/details/6881372 *一.FrameBuffer的原理* FrameBuffer 是出现在 2.2.xx 内核 ...
- 常用mysql命令
net start mysql命令,启动mysql数据库 1:查看服务器上存在哪些数据库:show databases;2:建立数据库mydb: create database mydb;3:使用你所 ...
- 导入libxml.dylib用Google的GDataXML解析XML数据
1.用Google的GDataXML来解析XML数据,导入libxml.dylib 2.导入libxml.dylib的操作实现,一开始自己总是找不到libxml.dylib文件. 选择其他文件,到路径 ...
- TcpListener 示例
using System; using System.IO; using System.Net; using System.Net.Sockets; using System.Text; class ...
- eclipse 使用问题
eclipse 启动失败,错误信息为org.eclipse.swt.SWTException: Failed to execute runnable 方法三:删除了workspace\.metadat ...