Alignment
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 13319   Accepted: 4282

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned;
it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their
places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height
between him and that extremity. 



Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line. 

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from
this line represents the height of the soldier who has the code k (1 <= k <= n). 



There are some restrictions: 

• 2 <= n <= 1000 

• the height are floating numbers from the interval [0.5, 2.5] 

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

Source

Romania OI 2002

题目要求:给出n个人排成一排。踢出一些人。让每一个人都能看到最左端,或最后端,最小的踢出人数是?

计算出正序和倒序的最长上升子序列,然后统计:有两种可能。一种是当中一个人是中间。那个人的身高最高。还有事两个人的身高同样。这两个人位置在中间,统计出最长的可能出现的队伍长度,计算出最小的踢出人数

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int dp1[1200] , dp2[1200] ;
double h[1200] ;
int main()
{
int i , j , n , min1 ;
while(scanf("%d", &n)!=EOF)
{
min1 = 1200 ;
h[0] = 0 ; h[n+1] = 0 ;
for(i = 1 ; i <= n ; i++)
scanf("%lf", &h[i]);
memset(dp1,0,sizeof(dp1));
for(i = 1 ; i <= n ; i++)
{
for(j = 0 ; j < i ; j++)
if( h[j] < h[i] && dp1[j]+1 > dp1[i] )
dp1[i] = dp1[j]+1 ;
}
memset(dp2,0,sizeof(dp2));
for(i = n ; i >= 1 ; i--)
{
for(j = n+1 ; j > i ; j--)
if( h[j] < h[i] && dp2[j]+1 > dp2[i] )
dp2[i] = dp2[j]+1 ;
}
for(i = 1 ; i <= n ; i++)
{
for(j = i ; j <= n ; j++)
{
if(i == j)
min1 = min(min1,n-(dp1[i]+dp2[j]-1) );
else
min1 = min(min1, n-( dp1[i]+dp2[j] ) );
}
}
printf("%d\n", min1);
}
}

poj1836--Alignment(dp,最长上升子序列变形)的更多相关文章

  1. 洛谷 P1020 导弹拦截(dp+最长上升子序列变形)

    传送门:Problem 1020 https://www.cnblogs.com/violet-acmer/p/9852294.html 讲解此题前,先谈谈何为最长上升子序列,以及求法: 一.相关概念 ...

  2. poj1159--Palindrome(dp:最长公共子序列变形 + 滚动数组)

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 53414   Accepted: 18449 Desc ...

  3. uva 10131 Is Bigger Smarter ? (简单dp 最长上升子序列变形 路径输出)

    题目链接 题意:有好多行,每行两个数字,代表大象的体重和智商,求大象体重越来越大,智商越来越低的最长序列,并输出. 思路:先排一下序,再按照最长上升子序列计算就行. 还有注意输入, 刚开始我是这样输入 ...

  4. hdu 1025 dp 最长上升子序列

    //Accepted 4372 KB 140 ms //dp 最长上升子序列 nlogn #include <cstdio> #include <cstring> #inclu ...

  5. DP——最长上升子序列(LIS)

    DP——最长上升子序列(LIS) 基本定义: 一个序列中最长的单调递增的子序列,字符子序列指的是字符串中不一定连续但先后顺序一致的n个字符,即可以去掉字符串中的部分字符,但不可改变其前后顺序. LIS ...

  6. ACM: 强化训练-Beautiful People-最长递增子序列变形-DP

    199. Beautiful People time limit per test: 0.25 sec. memory limit per test: 65536 KB input: standard ...

  7. hdu 1080 dp(最长公共子序列变形)

    题意: 输入俩个字符串,怎样变换使其所有字符对和最大.(字符只有'A','C','G','T','-') 其中每对字符对应的值如下: 怎样配使和最大呢. 比如: A G T G A T G -  G ...

  8. hdu1503 最长公共子序列变形

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1503 题意:给出两个字符串 要求输出包含两个字符串的所有字母的最短序列.注意输出的顺序不能 ...

  9. HOJ Recoup Traveling Expenses(最长递减子序列变形)

    A person wants to travel around some places. The welfare in his company can cover some of the airfar ...

随机推荐

  1. Codeforces 56D Changing a String 编辑距离 记忆dp

    主题链接:点击打开链接 编辑距离.,== 一边dp虽然录制前体累,,依然是dp #include<iostream> #include<cstdio> #include< ...

  2. S3C3440看门狗驱动程序

    S3C3440看门狗驱动程序 http://www.cnblogs.com/lfsblack/archive/2012/09/13/2684079.html 看门狗是当CPU进入错误状态后,无法恢复的 ...

  3. Redis + Jedis + Spring整合遇到的异常(转)

    项目中需要用到缓存,经过比较后,选择了redis,客户端使用jedis连接,也使用到了spring提供的spring-data-redis.配置正确后启动tomcat,发现如下异常: Caused b ...

  4. 基于visual Studio2013解决C语言竞赛题之1055排序

       题目 解决代码及点评 /* 功能:已知A是有30个元素的整型数组,编写一个对A[I1]到A[I2](I1≤I2)之间的元素排序的函数(从大到小排序) 请调用上述函数先将A[5]至A[ ...

  5. yii Query Builder (yii 查询构造器) 官方指南翻译

    /**** Query Builder translated by php攻城师 http://blog.csdn.net/phpgcs Preparing Query Builder 准备 Quer ...

  6. Basic4android:多功能的Android应用软件快速开发平台

    Basic4android 是目前最简单.最强大的Android平台快速应用开发工具. ( "Basic4android is the simplest and most powerful ...

  7. 终于懂了:WM_PAINT 与 WM_ERASEBKGND(三种情况:用户操作,UpdateWindow,InvalidateRect产生的效果并不相同),并且用Delphi代码验证 good

    一直对这两个消息的关系不是太了解,借重新深刻学习windows编程的机会研究一番. 1)当窗口从无效变为有效时,比方将部分覆盖的窗口恢复时会重绘窗口时:程序首先会通过发送其他消息调用DefWindow ...

  8. catalan 数——卡特兰数(转)

    Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...

  9. Android网络电话软件Sipdroid试用

    Android网络电话软件Sipdroid试用 SipDroid v3.4beta 简介:sipdroid是一款基于网络的语音及视频通话客户端软件,sipdroid本身不经营网络语音服务,仅仅是一款开 ...

  10. Flex Label自动截取、自动换行

    label.maxDisplayedLines=0;      // 默认多行显示,不截取 label.maxDisplayedLines=1;     //任意整数,显示单行文本,自动截取(...) ...