Alignment
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 13319   Accepted: 4282

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned;
it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their
places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height
between him and that extremity. 



Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line. 

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from
this line represents the height of the soldier who has the code k (1 <= k <= n). 



There are some restrictions: 

• 2 <= n <= 1000 

• the height are floating numbers from the interval [0.5, 2.5] 

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

Source

Romania OI 2002

题目要求:给出n个人排成一排。踢出一些人。让每一个人都能看到最左端,或最后端,最小的踢出人数是?

计算出正序和倒序的最长上升子序列,然后统计:有两种可能。一种是当中一个人是中间。那个人的身高最高。还有事两个人的身高同样。这两个人位置在中间,统计出最长的可能出现的队伍长度,计算出最小的踢出人数

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int dp1[1200] , dp2[1200] ;
double h[1200] ;
int main()
{
int i , j , n , min1 ;
while(scanf("%d", &n)!=EOF)
{
min1 = 1200 ;
h[0] = 0 ; h[n+1] = 0 ;
for(i = 1 ; i <= n ; i++)
scanf("%lf", &h[i]);
memset(dp1,0,sizeof(dp1));
for(i = 1 ; i <= n ; i++)
{
for(j = 0 ; j < i ; j++)
if( h[j] < h[i] && dp1[j]+1 > dp1[i] )
dp1[i] = dp1[j]+1 ;
}
memset(dp2,0,sizeof(dp2));
for(i = n ; i >= 1 ; i--)
{
for(j = n+1 ; j > i ; j--)
if( h[j] < h[i] && dp2[j]+1 > dp2[i] )
dp2[i] = dp2[j]+1 ;
}
for(i = 1 ; i <= n ; i++)
{
for(j = i ; j <= n ; j++)
{
if(i == j)
min1 = min(min1,n-(dp1[i]+dp2[j]-1) );
else
min1 = min(min1, n-( dp1[i]+dp2[j] ) );
}
}
printf("%d\n", min1);
}
}

poj1836--Alignment(dp,最长上升子序列变形)的更多相关文章

  1. 洛谷 P1020 导弹拦截(dp+最长上升子序列变形)

    传送门:Problem 1020 https://www.cnblogs.com/violet-acmer/p/9852294.html 讲解此题前,先谈谈何为最长上升子序列,以及求法: 一.相关概念 ...

  2. poj1159--Palindrome(dp:最长公共子序列变形 + 滚动数组)

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 53414   Accepted: 18449 Desc ...

  3. uva 10131 Is Bigger Smarter ? (简单dp 最长上升子序列变形 路径输出)

    题目链接 题意:有好多行,每行两个数字,代表大象的体重和智商,求大象体重越来越大,智商越来越低的最长序列,并输出. 思路:先排一下序,再按照最长上升子序列计算就行. 还有注意输入, 刚开始我是这样输入 ...

  4. hdu 1025 dp 最长上升子序列

    //Accepted 4372 KB 140 ms //dp 最长上升子序列 nlogn #include <cstdio> #include <cstring> #inclu ...

  5. DP——最长上升子序列(LIS)

    DP——最长上升子序列(LIS) 基本定义: 一个序列中最长的单调递增的子序列,字符子序列指的是字符串中不一定连续但先后顺序一致的n个字符,即可以去掉字符串中的部分字符,但不可改变其前后顺序. LIS ...

  6. ACM: 强化训练-Beautiful People-最长递增子序列变形-DP

    199. Beautiful People time limit per test: 0.25 sec. memory limit per test: 65536 KB input: standard ...

  7. hdu 1080 dp(最长公共子序列变形)

    题意: 输入俩个字符串,怎样变换使其所有字符对和最大.(字符只有'A','C','G','T','-') 其中每对字符对应的值如下: 怎样配使和最大呢. 比如: A G T G A T G -  G ...

  8. hdu1503 最长公共子序列变形

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1503 题意:给出两个字符串 要求输出包含两个字符串的所有字母的最短序列.注意输出的顺序不能 ...

  9. HOJ Recoup Traveling Expenses(最长递减子序列变形)

    A person wants to travel around some places. The welfare in his company can cover some of the airfar ...

随机推荐

  1. 一个Sqrt谋杀触发功能

    我们平时常常会有一些数据运算的操作,须要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是怎样实现的?就拿最常常使用的sqrt函数来说吧.系统怎么来实现这个常常调用的函数呢? ...

  2. Java面试题精选(三) JSP/Servlet Java面试逻辑题

    --   JSP/Servlet  Java面试逻辑题   --     很显然,Servlet/JSP的WEB前端动态制作的重要性比HTML/CSS/JS的价值高很多,但我们都知道他们都是建立在HT ...

  3. (摘录)MSMQ的简单介绍

    MSMQ(MicroSoft  Message  Queue,微软消息队列)是在多个不同的应用之间实现相互通信的一种异步传输模式,相互通信的应用可以分布于同一台机器上,也可以分布于相连的网络空间中的任 ...

  4. 问题:Excel在“xxx.xlsx”中发现不可读取的内容。是否恢复此工作薄的内容?【原创】

    现象: 点"是(Y)" 提示信息中提到的error242440_02.xml文件: 问题重现: package poi; import java.io.FileNotFoundEx ...

  5. XDU 1284 寻找礼物

    枚举+二分查找. A+B+C >= K  ---->   C >= K - A -B    ----> 统计大于等于C的个数就可以. #include <cstdio&g ...

  6. HDU1584:蜘蛛牌(DFS)

    Problem Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么 ...

  7. 英特尔的VT-d技术是什么?

    VT-d技术: 我们知道对于服务器而言,很重要的一个组成部分就I/O,CPU的计算能力提升虽然可以更快地处理数据,但是前提是数据能够顺畅的到达CPU,因此,无论是存储,还是网络,以及图形卡.内存等,I ...

  8. VC 实现视图区背景颜色渐变填充

    void CSTest1View::OnDraw(CDC* pDC) { CSTest1Doc* pDoc = GetDocument(); ASSERT_VALID(pDoc); // TODO:  ...

  9. phabricator在mac上的搭建(转)

    环境:OS X Yosemite 10.10.5 前提:phabricator主要是由php写的,而且是以website方式运行的,所以mac上要先安装好 php + nginx(或apache) + ...

  10. Nubia Z5S 基于官方H207/4.4内核的Mokee4.4.4 RC3.2 (2014.7.31修复呼吸灯(能亮依旧不能呼吸))

    特别感谢 yun3195 和 轻描淡写Yhw  帮忙測试 转帖请务必注明本链接地址: http://blog.csdn.net/syhost/article/details/36444259 此ROM ...