早晨碰到了一题挺裸的最短路问题需要打印路径:vijos1635

1.首先说说spfa的方法:

其实自己之前打的最多的spfa是在网格上的那种,也就是二维的

一维的需要邻接表+queue

以及对于queue的操作,自己也是醉了

这里贴一个模板(不含打印路径):

#include<cstdio>
#include<cstring>
#include<queue>
#include<iostream>
using namespace std;
const int maxn=10100;
int n,m,k,t,x,y,s,ans=0;
long long tot=0;
struct edge{
int from,to,w,next;
}e[10100000];
int head[maxn],dist[maxn];
bool vis[maxn];
void add(int x,int y,int z){//邻接表
e[tot].from=x;
e[tot].to=y;
e[tot].w=z;
e[tot].next=head[x];
head[x]=tot++;
}
void spfa(int s){
queue<int>q;
memset(dist,63,sizeof(dist));
memset(vis,false,sizeof(vis));//感觉这里的赋值和二维的略有区别,这里是初始值false
q.push(s);
dist[s]=0;
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=false;②
for(int i=head[u];i!=-1;i=e[i].next){
int v=e[i].to;
if(dist[v]>dist[u]+e[i].w){
dist[v]=dist[u]+e[i].w;
if(!vis[v]){ //如果已经入队,或是初始值①
vis[v]=true;
q.push(v);
}
}
}
}
}
int main(){
scanf("%d",&n);
memset(head,-1,sizeof(head));//记得head赋值为-1
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
scanf("%d",&s);
if(s!=0){
add(i,j,s);
}
}
spfa(1);
printf("%d",dist[n]);
return 0;
}

好好感受一下①和②

对于spfa打印路径问题:

这里就需要用上指针的思想,去找n的前驱

所以如果dist有更新值,那么就记录下,但是这里要理解,

你记录的并不是根据这条路的路径顺序记的

说白了就是,f[1]并不是第一条路径

而是让v->u,这才是f应该做的

   if(dist[v]>dist[u]+e[i].w){
dist[v]=dist[u]+e[i].w;
f[v]=u;//在更新值的后面加上这个
if(!vis[v]){
vis[v]=true;
q.push(v);
}
}

以及调用一个递归函数寻找前驱:

void printpath(int k){
if(k!=0){
printpath(f[k]);
printf("%d ",k);
}
}

2.FLOYD算法:

初始化 f[i][j]=j;

之后也是在更新值后面加上一条语句:

k=1-n

i=1-n

j=1-n

if(..>..)

dist[i][j]=dist[i][k]+dist[k][j];

f[i][j]=f[i][k];

比如要打印v,w的路径:
k=P[v][w]; /* 获得第一个路径顶点下标 */
printf(" path: %d",v); /* 打印源点 */
while(k!=w) /* 如果路径顶点下标不是终点 */
{
printf(" -> %d",k); /* 打印路径顶点 */
k=P[k][w]; /* 获得下一个路径顶点下标 */
}
printf(" -> %d\n",w); /* 打印终点 */

  

SPFA和FLOYD算法如何打印路径的更多相关文章

  1. Dijkstra、Bellman_Ford、SPFA、Floyd算法复杂度比较

    参考 有空再更新下用c++, 下面用的Java Dijkstra:适用于权值为非负的图的单源最短路径,用斐波那契堆的复杂度O(E+VlgV) BellmanFord:适用于权值有负值的图的单源最短路径 ...

  2. Floyd算法——保存路径——输出路径 HDU1385

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1385 参考 http://blog.csdn.net/shuangde800/article/deta ...

  3. Floyd算法并输出路径

    hdu1224 Free DIY Tour Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  4. [Python] 弗洛伊德(Floyd)算法求图的直径并记录路径

    相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两 ...

  5. 算法学习记录-图——最小路径之Floyd算法

    floyd算法: 解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包. 设为从到的只以集合中的节点为中间节点的最短路径的长度. 若最短路径经过 ...

  6. HDOJ 2544 最短路(最短路径 dijkstra算法,SPFA邻接表实现,floyd算法)

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. 最小路径算法(Dijkstra算法和Floyd算法)

    1.单源点的最短路径问题:给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径. 我们用一个例子来具体说明迪杰斯特拉算法的流程. 定义源点为 0,dist[i]为源点 0 到顶点 i 的最短路径 ...

  8. 最短路-SPFA算法&Floyd算法

    SPFA算法 算法复杂度 SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环. SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 ...

  9. L2-001. 紧急救援 (Dijkstra算法打印路径)

    作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上.当其他城市有紧急求 ...

随机推荐

  1. android 性能測试iozone篇

    一:简单介绍 iozone是一个文件系统的benchmark工具, 用于測试不同的操作系统中文件系统的读写性能, 能够測试下面13种模式 0=write/rewrite 1=read/re-read ...

  2. SQL Server编程系列(2):SMO常用对象的有关操作

    原文:SQL Server编程系列(2):SMO常用对象的有关操作 在上一篇周公简单讲述了SMO的一些基本概念,实际上SMO体系结构远不止周公在上一篇中讲述的那么简单,下图是MSDN上给出的一个完整的 ...

  3. HDU 1877 另一个版本 A+B

    另一个版本 A+B Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  4. 四:redis的sets类型 - 相关操作(有序和无序集合)

    ================四十五种(有序和无序集合):sets种类(它是一个集)=============      简介:  set它代表的集合.加入是随意添加----->无序集合    ...

  5. PHP memcache实现消息队列实例

    现在,memcache于server缓存广泛应用.下面我来介绍一下memcache消息队列中等待的样本实现,有需要了解的朋友可以参考. memche消息队列原则key上做文章.后消息或者日志. 然后通 ...

  6. Android自己定义组件系列【8】——面膜文字动画

    我们掩盖文字动画Flash中非经货共同体共同,由于Android应用程序开发人员做你想要做这个动画在应用程序中去?本文中,我们看的是如何自己的定义ImageView来实现让一张文字图片实现文字的遮罩闪 ...

  7. C#操作Xml:使用XmlWriter写Xml

    假定创建了XmlWriter的实例变量xmlWriter,下文中将使用此实例变量写Xml 1.如何使用XmlWriter写Xml文档声明 ? // WriteStartDocument方法可以接受一个 ...

  8. selenium之多线程启动grid分布式测试框架封装(二)

    五.domain类创建 在domain包中创建类:RemoteLanchInfo.java 用来保存启动信息. package com.lingfeng.domain; public class Re ...

  9. Yii中CDbCriteria常用总结

    Yii的Active Recorder包装了很多. 特别是把SQL中 把where,order,limit,IN/not IN,like等常用短句都包含进CDbCriteria这个类中去,这样整个代码 ...

  10. Android小应用-----画画板

    public class MainActivity extends Activity { private ImageView iv; float startX = 0; float startY = ...