bzoj1061--线性规划
线性规划裸题。。。
根据题目很容易可以得到线性规划方程(以样例为例):
Min(2*x1+5*x2+2*x3)
x1+ 0+ 0>=2
x1+x2+ 0>=3
0+x2+x3>=4
x1,x2,x3>=0
再将方程对偶,得到:
Max(2*x1+3*x2+4*x3)
x1+x2+ 0<=2
0+x2+x3<=5
0+ 0+x3<=2
x1,x2,x3>=0
这就是线性规划的标准型了。
为了方便单纯型算法,加入变量x4,x5,x6:
Max(2*x1+3*x2+4*x3)
x4+x1+x2+ 0=2
x5+ 0+x2+x3=5
x6+ 0+ 0+x3=2
x1,x2,x3,x4,x5,x6>=0
这就是松弛型。显然此时最优解不变。
将松弛型写成矩阵的形式:
x1 x2 x3
x4 1 1 0 2
x5 0 1 1 5
x6 0 1 1 2
2 3 4 0(k)
当x1,x2,x3取0时,显然满足条件,此时答案为右下角的常数k
我们只需不断增大k,当k达到最大值时最优解就是k了。
那么怎么增大k呢?显然如果我们增大x1,答案会更优。
但x1不能无限制地增大,对于前3个方程,我们得到x1的限制:
1、x1<=2
2、x1无限制
3、x1无限制
我们选择最紧的一个限制1,将x1增大到它,再交换x1,x4。
交换之后再将某些系数改变,使其满足方程就可以了。
于是我们可以不断交换,直到矩阵最后一行的系数都不为正就可以了。最优解就是k。
具体看代码。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define N 1001
#define M 10001
#define DB double
#define Eps 1e-7
#define INF 0x3f3f3f3f3f3f3f3f
DB a[M][N],c[N],b[M],Ans,Tmp;
int i,j,n,m,l,r,x;
inline void Pivot(int x,int y){ //转轴操作,使矩阵满足方程
b[x]/=a[x][y];
for(int i=;i<=n;i++)if(i!=y)a[x][i]/=a[x][y];
a[x][y]=/a[x][y];
for(int i=;i<=m;i++)
if(i!=x&&fabs(a[i][y])>Eps){
b[i]-=a[i][y]*b[x];
for(int j=;j<=n;j++)if(j!=y)a[i][j]-=a[i][y]*a[x][j];
a[i][y]*=-a[x][y];
}
Ans+=c[y]*b[x];
for(int i=;i<=n;i++)if(i!=y)c[i]-=c[y]*a[x][i];
c[y]*=-a[x][y];
}
inline DB Simplex(){
while(){ //不断交换
for(i=;i<=n;i++)if(c[i]>Eps)break;
if(i>n)return Ans;
Tmp=INF;
for(j=;j<=m;j++)
if(a[j][i]>Eps&&b[j]/a[j][i]<Tmp)Tmp=b[j]/a[j][i],x=j;
if(Tmp==INF)return INF;
Pivot(x,i); //交换第x行,第i列
}
}
int main()
{
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)scanf("%lf",&c[i]);
for(i=;i<=m;i++){
scanf("%d%d%lf",&l,&r,&b[i]);
for(j=l;j<=r;j++)a[i][j]=;
}
printf("%d",(int)(Simplex()+0.5));
}
bzoj1061
bzoj1061--线性规划的更多相关文章
- 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募
线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...
- 单纯形求解线性规划(BZOJ1061)
推荐一篇论文:http://wenku.baidu.com/view/ce5784754a7302768f99391d 我们设xi为第i个志愿者的招募次数,以样例为例,则不难列出如下的线性规划方程: ...
- BZOJ1061 NOI2008 志愿者招募 线性规划、费用流
传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...
- 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)
题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西, ...
- 【bzoj1061】[NOI2008]志愿者招募 线性规划与费用流
题目描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完成,其中第i ...
- BZOJ1061: [Noi2008]志愿者招募(线性规划)
Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5725 Solved: 3437[Submit][Status][Discuss] Descript ...
- [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...
- BZOJ-1061 志愿者招募 线性规划转最小费用最大流+数学模型 建模
本来一眼建模,以为傻逼题,然后发现自己傻逼...根本没想到神奇的数学模型..... 1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 ...
- 【bzoj1061】 Noi2008—志愿者招募
http://www.lydsy.com/JudgeOnline/problem.php?id=1061 (题目链接) 题意 给定n天,第i天需要ai个志愿者,有m类志愿者,每类志愿者工作时间为[l, ...
- [BZOJ1061][Noi2008]志愿者招募
[BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...
随机推荐
- swift之向ftp服务器传文件
在 mac 上如何使用 xcode, swift 语言开发一个向 ftp 服务器上传文件的工具? 使用的是第三方库 Rebekka,下载地址为:https://github.com/Constanti ...
- CodeForces 621C Wet Shark and Flowers
方法可以转化一下,先计算每一个鲨鱼在自己范围内的数能被所给素数整除的个数有几个,从而得到能被整除的概率,设为f1,不能被整除的概率设为f2. 然后计算每相邻两只鲨鱼能获得钱的期望概率,f=w[id1] ...
- php+socket模拟表单发送请求
<?php /** * http请求类(php + socket) * @todo 这里还有很多未完善的地方,仅有简单的get post head请求 * @author chuangrain@ ...
- LPC1788的ADC和DAC使用
#ifndef __ADC1_H_ #define __ADC1_H_ #include "common.h" #include "delay.h" void ...
- HTML编辑模式下制作表格
前面有朋友问如何做图文并茂的音乐帖子,的确音乐能以表格式做出来,更能让人过目不忘,何况帖子制作过程本身就是创作,包含了制作人对音乐的理解和爱好.以下简单介绍用代码HTML制作表格,希望对大家有所帮助. ...
- Docker学习小计
1.自动下载并且创建容器 Now verify that the installation has worked by downloading the ubuntu image and launchi ...
- 大数据竞赛平台——Kaggle 入门
Reference: http://blog.csdn.net/witnessai1/article/details/52612012 Kaggle是一个数据分析的竞赛平台,网址:https://ww ...
- HUSTOJ 2796 && SPOJ1811
传送门:http://begin.lydsy.com/JudgeOnline/problem.php?id=2796 题解:后缀自动机,很裸,但是感觉对后缀自动机还不是特别理解,毕竟我太蒟蒻,等我精通 ...
- Python3基础 用 while循环实现 斐波那契数列
镇场诗: 诚听如来语,顿舍世间名与利.愿做地藏徒,广演是经阎浮提. 愿尽吾所学,成就一良心博客.愿诸后来人,重现智慧清净体.-------------------------------------- ...
- 【拓扑排序】【线段树】Gym - 101102K - Topological Sort
Consider a directed graph G of N nodes and all edges (u→v) such that u < v. It is clear that this ...