U149791 正多边形变换
原博客网页——洛谷博客
如果您对群论有所了解,那么本题就是对二面体群 \(D_{2n}\) 的简单实现,您可以直接跳到代码部分。下面的解题思路只是对二面体群 \(D_{2n}\) 的构造思路的诠释。
解题思路
(为描述方便,记操作类型为 \(op\) 操作变量为 \(k\) 的操作为 \((op,k)\),连续两次操作记作 \((op,k)*(op',k')\))
对于两次旋转,显然有 \((0,k)*(0,k')=(0,(k+k') \mod n)\) 。
对于旋转再关于 \(x\) 对称,显然有 \((0,k)*(1,0)=(1,k)\)
对于关于 \(x\) 对称再旋转,发现反转后,顶点标号从逆时针转为顺时针(反之亦然),旋转角度即刻反转,即 \((1,0)*(0,k)=(1,n-k)\)
对于操作 \((1,k)\) ,发现 \(k\) 号轴与 \(x\) 轴的夹角为 \(\frac{\pi k}{n}\) ,且关于 \(k\) 号轴对称相当于旋转 \(\frac{\pi k}{n}\) 弧度、关于 \(x\) 轴对称、再旋转 \(-\frac{\pi k}{n}\) 弧度,于是我们得到恒等式:\((1,k)=(0,\frac{k}{2})*(1,0)*(0,-\frac{k}{2})\) (其中的 \(\frac{k}{2}\) 不一定为整数,这是不太严谨的地方,不过强行把操作变量的范围扩展到半整数也未尝不可)。运用这个等式,推出:
- \((0,k)*(1,k')=(1,(k+k') \mod n)\)
- \((1,k)*(0,k')=(1,(k+n-k') \mod n)\)
- \((1,k)*(1,k')=(0,(k+n-k') \mod n)\)
综上:
- \((0,k)*(0,k')=(0,(k+k') \mod n)\)
- \((0,k)*(1,k')=(1,(k+k') \mod n)\)
- \((1,k)*(0,k')=(1,(k+n-k') \mod n)\)
- \((1,k)*(1,k')=(0,(k+n-k') \mod n)\)、
我们可以将正多边形的初始状态记作 \((0,0)\) ,那么代码就是对以上四个式子的实现,时间复杂度 \(O(m)\) 。
代码\(_{_{{\text{(数据就是它造的)}}}}\)
#include<cstdio>
using namespace std;
int main() {
int n, m;
int reflect = 0, rotate = 0;
scanf("%d%d", &n, &m);
while (m--) {
int op, k;
scanf("%d%d", &op, &k);
if (reflect) rotate = (rotate + n - k) % n;
else rotate = (rotate + k) % n;
reflect = (reflect + op) % 2;
}
printf("%d %d", reflect, rotate);
return 0;
}
U149791 正多边形变换的更多相关文章
- BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]
1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1383 Solved: 582[Submit][St ...
- Hilbert-Huang Transform(希尔伯特-黄变换)
在我们正式开始讲解Hilbert-Huang Transform之前,不妨先来了解一下这一伟大算法的两位发明人和这一算法的应用领域 Section I 人物简介 希尔伯特:公认的数学界“无冕之王”,1 ...
- 【Win 10 应用开发】三维变换
所谓三维变换,其实是在二维平面上产生三维的视觉效果.前面老周简单提了一下透视效果,如果透视效果不能满需求,那可以考虑用三维变换. UIElement类有一个属性叫Transform3D,它定义的类型为 ...
- CSS3之3d变换与关键帧
3d变换是在transform基础上实现的 transform-style:preserve-3d; 建立3d空间 perspective:; 景深(设置用户看的距离) perspective-ori ...
- 纯CSS3实现多层云彩变换飞行动画
查看效果:http://hovertree.com/texiao/css3/4/效果2 效果图: 代码如下: <!doctype html> <html lang="zh& ...
- CSS3之过渡及2D变换
transition过渡 transition-duration:; 运动时间 transition-delay:; 延迟时间 transition-timing-function:; 运动形式 ea ...
- 为什么FFT时域补0后,经FFT变换就是频域进行内插?
应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...
- 相机变换与Ray-Casting
p { margin-bottom: 0.1in; direction: ltr; line-height: 120%; text-align: justify; orphans: 0; widows ...
- UVA 12300 Smallest Regular Polygon(正多边形)
题意:给出两点,求经过这两点的正n边形的最小面积 题解:这两点一定是最长的弦,我们设正多边形中点c,找到c到每个点的距离(都相同) 我们知道那个等腰三角形的底与每个角度就使用余弦定理 #include ...
随机推荐
- Selenium3自动化测试【18】XPath定位元素(2)
层级与属性结合定位 如果被定为的元素,无法通过自身属性来唯一标识自己,此时可以考虑借助上级元素来定位自己.举生活中的例子,一个婴儿刚出生,还没有姓名与身份证号,此时给婴儿进行检查时往往会标注为&quo ...
- [leetcode] 39. 组合总和(Java)(dfs、递归、回溯)
39. 组合总和 直接暴力思路,用dfs+回溯枚举所有可能组合情况.难点在于每个数可取无数次. 我的枚举思路是: 外层枚举答案数组的长度,即枚举解中的数字个数,从1个开始,到target/ min(c ...
- 干货:ANR日志分析全面解析
一.概述 解决ANR一直是Android 开发者需要掌握的重要技巧,一般从三个方面着手. 开发阶段:通过工具检查各个方法的耗时,卡顿情况,发现一处修改一处. 线上阶段:这个阶段主要依靠监控工具发现AN ...
- 3D重建算法原理
3D重建算法原理 三维重建(3D Reconstruction)技术一直是计算机图形学和计算机视觉领域的一个热点课题.早期的三维重建技术通常以二维图像作为输入,重建出场景中的三维模型.但是,受限于输入 ...
- Hadoop 数据迁移用法详解
数据迁移使用场景 冷热集群数据分类存储,详见上述描述. 集群数据整体搬迁.当公司的业务迅速的发展,导致当前的服务器数量资源出现临时紧张的时候,为了更高效的利用资源,会将原A机房数据整体迁移到B机房的, ...
- WEB 页面认证
1:安装htpasswd工具生成加密文件 安装工具 # yum install httpd-tools # htpasswd -cm /etc/httpd/passwd/password useraN ...
- 微信小程序踩坑之获取手机号
最近在开发小程序遇到这样一个问题, 在用户点击授权后去解密手机号时会出现第一次失败,第二次成功的情况.研究了一段时间,终于找到比较合理的解决方案,在此记录并总结一下,希望可以帮助到大家. 需求描述 在 ...
- 【VBA】类型转换
每个函数都可以强制将一个表达式转换成某种特定数据类型. 语法 CBool(expression) CByte(expression) CCur(expression) CDate(expression ...
- SpringBoot整合SpringSecurity示例实现前后分离权限注解
SpringBoot 整合SpringSecurity示例实现前后分离权限注解+JWT登录认证 作者:Sans_ juejin.im/post/5da82f066fb9a04e2a73daec 一.说 ...
- 关于web移动端定位
最近在做一个搜索附近3公里所有超市信息(已经录入数据库的超市信息)的功能.思路很简单只是获取用户当前地理位置(经纬度),通过sql语句筛选出3公里范围内的所有超市信息,然后传递到前台页面展示出来.但是 ...