A. Lorenzo Von Matterhorn
1 second
256 megabytes
standard input
standard output
Barney lives in NYC. NYC has infinite number of intersections numbered with positive integers starting from 1. There exists a bidirectional road between intersections i and 2i and another road between i and 2i + 1 for every positive integer i. You can clearly see that there exists a unique shortest path between any two intersections.
Initially anyone can pass any road for free. But since SlapsGiving is ahead of us, there will q consecutive events happen soon. There are two types of events:
1. Government makes a new rule. A rule can be denoted by integers v, u and w. As the result of this action, the passing fee of all roads on the shortest path from u to v increases by w dollars.
2. Barney starts moving from some intersection v and goes to intersection u where there's a girl he wants to cuddle (using his fake name Lorenzo Von Matterhorn). He always uses the shortest path (visiting minimum number of intersections or roads) between two intersections.
Government needs your calculations. For each time Barney goes to cuddle a girl, you need to tell the government how much money he should pay (sum of passing fee of all roads he passes).
The first line of input contains a single integer q (1 ≤ q ≤ 1 000).
The next q lines contain the information about the events in chronological order. Each event is described in form 1 v u w if it's an event when government makes a new rule about increasing the passing fee of all roads on the shortest path from u to v by w dollars, or in form 2 v u if it's an event when Barnie goes to cuddle from the intersection v to the intersection u.
1 ≤ v, u ≤ 1018, v ≠ u, 1 ≤ w ≤ 109 states for every description line.
For each event of second type print the sum of passing fee of all roads Barney passes in this event, in one line. Print the answers in chronological order of corresponding events.
7
1 3 4 30
1 4 1 2
1 3 6 8
2 4 3
1 6 1 40
2 3 7
2 2 4
94
0
32
In the example testcase:
Here are the intersections used:
- Intersections on the path are 3, 1, 2 and 4.
- Intersections on the path are 4, 2 and 1.
- Intersections on the path are only 3 and 6.
- Intersections on the path are 4, 2, 1 and 3. Passing fee of roads on the path are 32, 32 and 30 in order. So answer equals to 32 + 32 + 30 = 94.
- Intersections on the path are 6, 3 and 1.
- Intersections on the path are 3 and 7. Passing fee of the road between them is 0.
7.Intersections on the path are 2 and 4. Passing fee of the road between them is 32 (increased by 30 in the first event and by 2 in the second).
题意:找树两点之间之间最短距离的花费;
思路:模拟,用map存每个节点当前的花费,表示这个节点到父亲节点的花费,查询或更新每个节点时,因为每个节点都是只有通过父亲节点才能到达的,所以只要向上找父亲节点记录,然后去掉两个点共同经过的节点,剩下的节点就是两个点之间的最短路。然更新或求费用。
复杂度log(n);
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 #include<queue>
7 #include<map>
8 #include<math.h>
9 using namespace std;
10 map<long long ,long long>my;
11 long long num1[100];
12 long long num2[100];
13 int x,y;
14 void findd(long long n)
15 {
16 while(n>=0)
17 {
18 num1[x++]=n;
19 if(n==0)break;
20 n=n-1;
21 n/=2;
22
23 }
24 }
25 void finddd(long long n)
26 {
27
28 while(n>=0)
29 {
30 num2[y++]=n;
31 if(n==0)
32 break;
33 n=n-1;
34 n/=2;
35 }
36 }
37 int main(void)
38 {
39 int i,j,k;
40 while(scanf("%d",&k)!=EOF)
41 {
42 x=0;
43 y=0;
44 my.clear();
45 while(k--)
46 {
47 long long n,m,p,q;
48 scanf("%I64d",&p);
49 x=0,y=0;
50 if(p==1)
51 {
52 scanf("%I64d %I64d %I64d",&n,&m,&q);
53 n-=1;
54 m-=1;
55 findd(n);
56 finddd(m);
57 int t=x-1;
58 int tt=y-1;
59 while(num1[t]==num2[tt]&&t>=0&&tt>=0)
60 {
61 t--;
62 tt--;
63 }
64 for(j=0; j<=t; j++)
65 {
66 my[num1[j]]+=q;
67
68 }
69 for(j=0; j<=tt; j++)
70 {
71 my[num2[j]]+=q;
72 }
73 }
74 else if(p==2)
75 {
76 x=0;
77 y=0;
78 scanf("%I64d %I64d",&n,&m);
79 n-=1;
80 m-=1;
81 findd(n);
82 finddd(m);
83 long long ask=0;
84 int t=x-1;
85 int tt=y-1;
86 while(num1[t]==num2[tt]&&t>=0&&tt>=0)
87 {
88 t--;
89 tt--;
90 }
91 for(j=0; j<=t; j++)
92 {
93 ask+=my[num1[j]];
94
95 }
96 for(j=0; j<=tt; j++)
97 {
98
99 ask+=my[num2[j]];
100 }
101 printf("%I64d\n",ask);
102 }
103 }
104 }
105 return 0;
106 }
A. Lorenzo Von Matterhorn的更多相关文章
- Lorenzo Von Matterhorn
Lorenzo Von Matterhorn Barney lives in NYC. NYC has infinite number of intersections numbered with p ...
- C. Lorenzo Von Matterhorn LCA
C. Lorenzo Von Matterhorn time limit per test 1 second memory limit per test 256 megabytes input sta ...
- #map+LCA# Codeforces Round #362 (Div. 2)-C. Lorenzo Von Matterhorn
2018-03-16 http://codeforces.com/problemset/problem/697/C C. Lorenzo Von Matterhorn time limit per t ...
- Lorenzo Von Matterhorn(STL_map的应用)
Lorenzo Von Matterhorn time limit per test 1 second memory limit per test 256 megabytes input standa ...
- codeforces 696A A. Lorenzo Von Matterhorn(水题)
题目链接: A. Lorenzo Von Matterhorn time limit per test 1 second memory limit per test 256 megabytes inp ...
- CodeForces 696A:Lorenzo Von Matterhorn(map的用法)
http://codeforces.com/contest/697/problem/C C. Lorenzo Von Matterhorn time limit per test 1 second m ...
- CF 696 A Lorenzo Von Matterhorn(二叉树,map)
原题链接:http://codeforces.com/contest/696/problem/A 原题描述: Lorenzo Von Matterhorn Barney lives in NYC. ...
- 【CodeForces 697C】Lorenzo Von Matterhorn(LCA)
Least Common Ancestors 节点范围是1~1e18,至多1000次询问. 只要不断让深的节点退一层(>>1)就能到达LCA. 用点来存边权,用map储存节点和父亲连边的权 ...
- codeforces 696A Lorenzo Von Matterhorn 水题
这题一眼看就是水题,map随便计 然后我之所以发这个题解,是因为我用了log2()这个函数判断在哪一层 我只能说我真是太傻逼了,这个函数以前听人说有精度问题,还慢,为了图快用的,没想到被坑惨了,以后尽 ...
随机推荐
- mac系统升级导致VirtualBox报Kernel driver not installed (rc=-1908)
一.背景 最近将我的Mac升级成了Monterey版本,结果发现之前的安装的VirtualBox虚拟机无法启动,报了如下错误. Kernel driver not installed (rc=-190 ...
- 突破冯·诺依曼架构瓶颈!全球首款存算一体AI芯片诞生
过去70年,计算机一直遵循冯·诺依曼架构设计,运行时数据需要在处理器和内存之间来回传输. 随着时代发展,这一工作模式面临较大挑战:在人工智能等高并发计算场景中,数据来回传输会产生巨大的功耗:目前内存系 ...
- MySQL8.0配置文件详解
mysql8.0配置文件一.关键配置1. 配置文件的位置 MySQL配置文件 /etc/my.cnf 或者 /etc/my.cnf.d/server.cnf几个关键的文件:.pid文件,记录了进程id ...
- [Emlog主题] Monkey V3.0 优化修改
原作者博客:https://blog.dyboy.cn/ Monkey V3.0 优化修改版 修改说明: 背景颜色修改(按个人喜好可自行修改,仿PCQQ午夜巴黎皮肤) 搜索框按钮样式优化,不那么突兀了 ...
- mysql触发器实例说明
触发器是一类特殊的事务 ,可以监视某种数据操作(insert/update/delete),并触发相关操作(insert/update/delete). 看以下事件: 完成下单与减少库存的逻辑 Ins ...
- OC-私有方法,构造方法,类的本质及启动过程
总结 标号 主题 内容 一 OC的私有方法 私有变量/私有方法 二 @property 概念/基本使用/寻找方法的过程/查找顺序 三 @synthesize @synthesize概念/基本使用/注意 ...
- linux-源码软件管理-yum配置
总结如下:1.源码配置软件管理2.配置yum本地源和网络源及yum 工作原理讲解3.计算机硬盘介绍 1.1 源码管理软件 压缩包管理命令: # 主流的压缩格式包括tar.rar.zip.war.gzi ...
- spring的注解AOP配置
package com.hope.service.impl;import com.hope.service.IAccountService;import org.aspectj.lang.annota ...
- 匿名内部类与lamda表达式
1.为什么要使用lamda表达式 从JDK1.8开始为了简化使用者进行代码开发,专门提供有Lambda表达式的支持,利用此操作形式可以实现函数式的编程,对于函数式编程比较著名的语言:haskell,S ...
- 强化学习实战 | 表格型Q-Learning玩井子棋(三)优化,优化
在 强化学习实战 | 表格型Q-Learning玩井字棋(二)开始训练!中,我们让agent"简陋地"训练了起来,经过了耗费时间的10万局游戏过后,却效果平平,尤其是初始状态的数值 ...