Atcoder 题面传送门 & 洛谷题面传送门

Yet another 思维题……

注意到此题 \(n\) 数据范围很大,但是 \(a_i,b_i\) 数据范围很小,这能给我们什么启发呢?

观察题目所求的组合数的形式,我们可以联想到组合数的组合意义(qwq 似乎 AGC 很喜欢放组合意义的题?涨见识了/cy):\(\dbinom{x+y}{x}\) 为从 \((0,0)\) 出发,只能向上或向右走,到达 \((x,y)\) 的方案数。

于是此题可以转化为,对于 \(\forall i,j\) 求出 \((0,0)\) 出发,到达 \((a_i+a_j,b_i+b_j)\) 的方案数。

但是这样貌似还是不好求,于是考虑再进行一个转化,将坐标轴进行平移,即可转化为 \((-a_i,-b_i)\) 到 \((a_j,b_j)\) 的方案数。

故本题等价于求计算两两点之间的路径条数总和。这个可以用一个简单的 \(dp\) 求出,\(dp_{i,j}\) 表示到达 \((x,y)\) 的路径条数,那么有个显然的转移方程 \(dp_{i,j}=dp_{i-1,j}+dp_{i,j-1}+[is_{i,j}]\),其中 \(is_{i,j}\) 表示 \((i,j)\) 是否为起点。这个 \(dp\) 显然可以在 \(\mathcal O(\max^2\{a_i\})\) 的时间内计算求得。最终答案即为 \(\sum\limits_{i=1}^ndp_{a_i,b_i}\)。

还有个小问题,就是通过以上算法求得的答案为对于任意 \(i,j\),\(\dbinom{a_i+a_j+b_i+b_j}{a_i+a_j}\) 的和,而题目要求 \(i<j\),故需将求得的答案减去 \(i=j\) 部分的答案后再除以 \(2\)。至于怎样求 \(i=j\) 部分的答案……这个就不用说了吧,刚学 OI 的时候就会了(bushi)。

时间复杂度 \(\mathcal O(n+m^2)\),其中 \(m=\max a_i\)。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=2e5;
const int DELTA=2002;
const int MOD=1e9+7;
const int INV2=5e8+4;
int n,a[MAXN+5],b[MAXN+5],dp[DELTA*2+5][DELTA*2+5];
int fac[DELTA*4+5],ifac[DELTA*4+5];
void prework(int k){
fac[0]=ifac[0]=ifac[1]=1;
for(int i=2;i<=k;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=k;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i]*ifac[i-1]%MOD;
}
int binom(int x,int y){return 1ll*fac[x]*ifac[x-y]%MOD*ifac[y]%MOD;}
int main(){
scanf("%d",&n);prework(DELTA<<2);int ans=0;
for(int i=1;i<=n;i++) scanf("%d%d",&a[i],&b[i]),dp[DELTA-a[i]][DELTA-b[i]]++;
for(int i=1;i<=DELTA*2;i++) for(int j=1;j<=DELTA*2;j++) dp[i][j]=(dp[i][j]+(dp[i-1][j]+dp[i][j-1])%MOD)%MOD;
for(int i=1;i<=n;i++) ans=(ans+dp[DELTA+a[i]][DELTA+b[i]])%MOD;
for(int i=1;i<=n;i++) ans=(ans-binom(a[i]+a[i]+b[i]+b[i],a[i]+a[i])+MOD)%MOD;
ans=1ll*ans*INV2%MOD;printf("%d\n",ans);
return 0;
}

Atcoder Grand Contest 001E - BBQ Hard(组合意义转化,思维题)的更多相关文章

  1. Atcoder Grand Contest 005 E - Sugigma: The Showdown(思维题)

    洛谷题面传送门 & Atcoder 题面传送门 记先手移动棋子的树为红树,后手移动棋子的树为蓝树. 首先考虑一个性质,就是如果与当前红色棋子所在的点相连的边中存在一条边,满足这条边的两个端点在 ...

  2. AtCoder Grand Contest 019 B - Reverse and Compare【思维】

    AtCoder Grand Contest 019 B - Reverse and Compare 题意:给定字符串,可以选定任意i.j且i<=j(当然i==j时没啥卵用),然后翻转i到j的字符 ...

  3. Atcoder Grand Contest 037B(DP,组合数学,思维)

    #include<bits/stdc++.h>using namespace std;const long long mod = 998244353;string s;int a[3000 ...

  4. Atcoder Grand Contest 037C(贪心,优先队列,思维)

    #define HAVE_STRUCT_TIMESPEC//编译器中time.h和phread.h头文件中timespec结构体重名,故加此行#include<bits/stdc++.h> ...

  5. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  6. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  7. AtCoder Grand Contest 007

    AtCoder Grand Contest 007 A - Shik and Stone 翻译 见洛谷 题解 傻逼玩意 #include<cstdio> int n,m,tot;char ...

  8. AtCoder Grand Contest 006

    AtCoder Grand Contest 006 吐槽 这套题要改个名字,叫神仙结论题大赛 A - Prefix and Suffix 翻译 给定两个串,求满足前缀是\(S\),后缀是\(T\),并 ...

  9. AtCoder Grand Contest 005

    AtCoder Grand Contest 005 A - STring 翻译 给定一个只包含\(ST\)的字符串,如果出现了连续的\(ST\),就把他删去,然后所有位置前移.问最后剩下的串长. 题解 ...

随机推荐

  1. js--Symbol 符号基本数据类型

    前言 ECMAScript 6 中新增了 Symbol 符号这一基本数据类型,那么Symbol 是用来干什么的,对开发又有什么帮助呢?本文来总结记录一下 Symbol 的相关知识点. 正文 Symbo ...

  2. 【UE4】GamePlay架构

    新标签打开或者下载看大图 更新: 增加 编程子系统 Subsystem 思维导图 Character pipeline

  3. Java:ArrayList类小记

    Java:ArrayList类小记 对 Java 中的 ArrayList类,做一个微不足道的小小小小记 概述 java.util.ArrayList 是大小可变的数组的实现,存储在内的数据称为元素. ...

  4. 注解,@Qualifier+@Autowired 和 @Resource

    摘要: 项目中,对于AOP的使用,就是通过用注解来注入的. 更改之前的注解,是使用:@Qualifier+@Autowired   但是,通过这样注解,在项目启动阶段,需要自动扫描的过程是非常缓慢的, ...

  5. [对对子队]会议记录4.21(Scrum Meeting12)

    今天已完成的工作 吴昭邦 ​ 工作内容:基本实现改变顺序合成 ​ 相关issue:实现流水线合成系统的逻辑 ​ 相关签入:4.21签入1 梁河览 ​ 工作内容:修改设置界面bug ​ 相关签入:4.2 ...

  6. 嵌入式单片机之STM32F103C8T6最小系统板电路设计参考

    STM32F103C8T6最小系统板电路设计 一.电源部分 设计了一个XH插座,以便使用3.7V锂电池供电,接入电压不允许超过6V. 二.指示灯部分 电源指示灯可以通过一个短路帽控制亮灭,以达到节电的 ...

  7. 单片机零基础学习之从“点灯”入门STM32

    本篇文章通过一个简单的例子来熟悉模块化编程以及利用库函数的方法进行开发使用STM32外设的基本流程. 首先,我们打开本讲的例程,在工程目录我们可以看到驱动分组下有 led.delay 两个.c源文件, ...

  8. [WPF] 在 Windows 11 中处理 WindowChrome 的圆角

    1. Windows 11 的圆角 在直角统治了微软的 UI 设计多年以后,微软突然把直角骂了一顿,说还是圆角好看,于是 Windows 11 随处都可看到圆角设计.Windows 11 使用 3 个 ...

  9. 决策树 机器学习,西瓜书p80 表4.2 使用信息增益生成决策树及后剪枝

    使用信息增益构造决策树,完成后剪枝 目录 使用信息增益构造决策树,完成后剪枝 1 构造决策树 1 根结点的选择 色泽 信息增益 根蒂 信息增益 敲声 信息增益 纹理 信息增益 脐部 信息增益 触感 信 ...

  10. Ubuntu virtualenv 创建 python3 虚拟环境 激活 退出

    首先默认安装了virtualenv 创建python3虚拟环境 your-name@node-name:~/virtual_env$ virtualenv -p /usr/bin/python3 py ...