洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)
二项式反演好题。
首先看到“恰好 \(k\) 个极大值点”,我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数,那么
\]
考虑怎么求 \(f_i\),首先我们肯定要选出 \(i\) 个极大的位置。我们假设 \(g_i\) 为选出 \(i\) 个极大的位置的方案数,那么显然 \(g_i\) 就是把每一个位置选择的方案数都乘起来。但这样会算重,具体来说,对于每一个合法的选出 \(i\) 个极大的位置的方案数,我们这样算相当于给全部 \(i\) 个极大点都上了标号,因此一种合法的方案会被重复计算 \(i!\) 次,总方案数还需除以 \(i!\),即
\]
接下来考虑怎么给与这 \(i\) 个极大值点在同一行/列/高度的位置填上数。首先我们设 \(c_i\) 表示与 \(i\) 个极大点在同一行/列/高度的格子数量。显然 \(c_i\) 可以通过总格子数量减去与 \(i\) 个极大值点都不在同一行/列/高度的格子数量,即 \(c_i=nml-(n-i)(m-l)(l-i)\)。再设 \(h_i\) 表示为给与这 \(i\) 个极大值点的任意一个极大值点在同一行/列/高度的位置填上 \(1\sim c_i\) 的数的方案数。我们考虑填上 \(c_i\) 的那个极值点,显然如果去掉那个极值点,那问题就转化为 \(i-1\) 的情况,方案数自然就是 \(h_{i-1}\)。而增加这个极值点则会多出 \(c_i-c_{i-1}\) 个与极大值点在同一行/列/高度的位置,由于第 \(i\) 个极值点已经填好了数,因此我们还需选出 \(c_i-c_{i-1}-1\) 个数,方案数为 \(\dbinom{c_i-1}{c_i-c_{i-1}-1}\),填好这 \(c_i-c_{i-1}-1\) 个数后还可以将它们随意排列,方案数就是 \((c_i-c_{i-1}-1)!\),因此我们可以得到:
\]
即
\]
递推一下有:
\]
最后考虑怎样求 \(f_i\),首先我们钦定 \(i\) 个极大值的位置,方案数 \(g_i\),我们还要选出 \(c_i\) 个数安排给与 \(i\) 个极大值点在同一行/列/高度的点们,方案数 \(\dbinom{nml}{c_i}\),由于 \(i\) 个极值点顺序可以调换,因此还要乘上 \(i!\);剩余 \(nml-c_i\) 个点可以随便填,方案数 \((nml-c_i)!\),最后我们还要将这 \(c_i\) 个数填到对应的位置上去,方案数 \(h_i\),因此
\]
展开来可以得到:
\]
发现有一堆东西可以怼掉,\(i!\) 和 \(\dfrac{1}{i!}\) 怼掉了,\((nml-c_i)!\) 和 \(\dfrac{1}{(nml-c_i)!}\) 怼掉了,我们还可以发现,前面的 \(\dfrac{1}{c_i!}\) 和后面的 \(\prod\limits_{j=1}^i\dfrac{(c_j-1)!}{c_{j-1}!}\) 拼起来变成 \(\dfrac{\prod\limits_{j=1}^i(c_j-1)!}{\prod\limits_{j=1}^ic_j!}\),显然这东西等于 \(\prod\limits_{j=1}^i\dfrac{1}{c_j}\),于是
\]
带到最一开始的答案的式子中
\]
\((nml)!\) 与 \(\dfrac{1}{(nml)!}\) 又怼掉了,剩下的式子中不含我们组合数学中不能直接算的东西(上下底数都很大的组合数、超过 \(10^7\) 的阶乘等),因此预处理出 \(\prod\limits_{j=0}^{i-1}(n-j)(m-j)(l-j)\),以及 \(\prod\limits_{j=1}^i\dfrac{1}{c_j}\),然后直接算上式的值是没问题的。有一个注意点,就是直接对每个 \(c_i\) 算一波逆元复杂度会多个 \(\log\),然后你就会获得 80pts 的好成绩。不过考虑借鉴求阶乘及其逆元的套路,我们先递推求出 \(c_j\) 的前缀积,然后对最后一项求一波逆元,然后再从后往前递推即可求出 \(\dfrac{1}{c_j}\) 的前缀积,这大概也算是组合数学中一个优化的小套路了吧(
复杂度线性。
const int MAXN=5e6;
const int MOD=998244353;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int fac[MAXN+5],ifac[MAXN+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int x,int y){return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;}
int n,m,l,k,g[MAXN+5],pre[MAXN+5],b[MAXN+5],inv_pre[MAXN+5],f[MAXN+5];
int calc(int x){return 1ll*(n-x)*(m-x)%MOD*(l-x)%MOD;}
void solve(){
scanf("%d%d%d%d",&n,&m,&l,&k);b[0]=pre[0]=1;
int lim=min(min(n,m),l),sz=1ll*n*m%MOD*l%MOD,res=0;
for(int i=1;i<=lim;i++) g[i]=(sz-calc(i)+MOD)%MOD;
for(int i=1;i<=lim;i++) pre[i]=1ll*pre[i-1]*g[i]%MOD;
inv_pre[lim]=qpow(pre[lim],MOD-2);
for(int i=lim-1;~i;i--) inv_pre[i]=1ll*inv_pre[i+1]*g[i+1]%MOD;
for(int i=1;i<=lim;i++) b[i]=1ll*b[i-1]*calc(i-1)%MOD;
for(int i=1;i<=lim;i++) f[i]=1ll*b[i]*inv_pre[i]%MOD;
for(int i=k;i<=lim;i++){
int mul=1ll*binom(i,k)*f[i]%MOD;
if((i-k)&1) res=(res-mul+MOD)%MOD;
else (res+=mul)%=MOD;
} printf("%d\n",res);
}
int main(){
init_fac(MAXN);
int qu;scanf("%d",&qu);while(qu--) solve();
return 0;
}
洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)的更多相关文章
- 洛谷 P5401 - [CTS2019]珍珠(NTT+二项式反演)
题面传送门 一道多项式的 hot tea 首先考虑将题目的限制翻译成人话,我们记 \(c_i\) 为 \(i\) 的出现次数,那么题目的限制等价于 \(\sum\limits_{i=1}^D\lflo ...
- 【题解】Luogu P5400 [CTS2019]随机立方体
原题传送门 毒瘤计数题 我们设\(dp_i\)表示至少有\(i\)个极大数字的概率,\(ans_i\)表示恰好有\(i\)个极大数的概率,\(mi=Min(n,m,l)\) 易知: \[dp_i=\s ...
- 【BZOJ2830/洛谷3830】随机树(动态规划)
[BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...
- LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体
题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...
- [LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演
分析 感觉这道题的计数方法好厉害.. 一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率. 考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\ ...
- LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演
传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...
- 题解-CTS2019随机立方体
problem \(\mathtt {loj-3119}\) 题意概要:一个 \(n\times m\times l\) 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标中至少有一 ...
- 洛谷P3158 [CQOI2011]放棋子 组合数学+DP
题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
随机推荐
- silky微服务快速开始
项目介绍 Silky框架旨在帮助开发者在.net平台下,通过简单代码和配置快速构建一个微服务开发框架. Silky 通过 .net core的主机来托管微服务应用.通过 Asp.Net Core 提供 ...
- 脚本注入1(boolean&&get)
现在,我们回到之前,练习脚本支持的布尔盲注(get型). 布尔盲注的应用场景是查询成功和失败时回显不同,且存在注入点的地方. 这里以Less-8为例: 发现查询成功时,会显示:失败则无回显. 同时发现 ...
- Mybatis 动态Sql练习
建表 CREATE TABLE `student` ( `s_id` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT ...
- OO助教工作总结
\(OO\)助教的工作结束了,在这一学期中,我主要负责对作业进行测试,对指导书进行检查,讨论区管理,部分数据构造,以及完成随班助教的工作. 测试 指导书检查 每次指导书公开前我都会先把指导书看 ...
- 问题:两个对象值相同(x.equals(y) == true),但是可能存在hashCode不同吗?
面试官的考察点 这道题仍然是考察JVM层面的基本知识,面试官认为,基本功扎实,才能写出健壮性和稳定性很高的代码. 涉及到的技术知识 (x.equals(y)==true),这段代码,看起来非常简单,但 ...
- 2021.10.26考试总结[冲刺NOIP模拟16]
T1 树上的数 \(DFS\)一遍.结构体存边好像更快? \(code:\) T1 #include<bits/stdc++.h> using namespace std; namespa ...
- 热身训练4 Eighty seven
Eighty seven 简要题意: n个卡片,其中第i个卡片的数值为$a[i]$.一共q次询问,每次询问将删去其中3个卡片(可能删除若干相同的卡片)后,问能否选出10个卡片,数值之和等于87. n≤ ...
- 【JavaScript基础】Js的定时器(你想看的原理也在哟)
[JavaScript基础]Js的定时器(你想看的原理也在哟) 博客说明 文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢! 说明 本章是经历 ...
- Jquery校验中国身份证号码是否正确
在项目中使用表单时经常会涉及到身份证号码是否正确的校验,下面看看应该中国二代身份证号码应该怎么用Jquery校验呢? 二代身份证校验码的计算方法 二代身份证由17位数字和一位校验码组成,那么校验方法是 ...
- 二进制插入 牛客网 程序员面试金典 C++ Python java
二进制插入 牛客网 程序员面试金典 题目描述 有两个32位整数n和m,请编写算法将m的二进制数位插入到n的二进制的第j到第i位,其中二进制的位数从低位数到高位且以0开始. 给定两个数int n和int ...