NOIP模拟赛T3 斐波那契
1.题目
求
\]
其中 \(F_k\) 表示斐波那契数列的第 \(k\) 项,对 \(10^9 + 7\) 取模。
多组数据。
2.题解
莫比乌斯反演板子题,但是太菜了,多做了一次反演,复杂度变为 \(tn\sqrt{n}\) 。实际是 \(t\sqrt{n}\)
直接推式子吧。
首先需要知道性质,\(\gcd(F_i,f_j)=F_{\gcd(i,j)}\)
这个性质是一道板子题,为洛谷上的斐波那契公约数,证明简单,本文略过。
\]
\]
我们发现 \(\gcd(i,j)\) 只有可能在 \(1\sim\min(n,m)\) 于是我们可以考虑去枚举这个 \(\gcd(i,j)\) ,然后乘上所对应的值,这样既为答案。
也就是说,写成这样(假设 \(n \leq m\)):
\(f(k)\) 表示的是公约数为 \(k\) 的数量。
\]
问题关键在于求 \(f(k)\) 。
\]
容易发现这就是一个嵌入式反演的变形,那么直接上莫比乌斯反演。
\]
\]
发现可以将 \(k\) 约掉,也就是:
\]
变为经典反演形式,开始进行反演。
\]
\]
然后改变枚举变量。
\]
也就是:
\]
然后交换求和顺序,以及内部改为枚举因数,最外层枚举 \(d\) ,就有:
\]
然后就预处理前缀和,然后套路整除分块回答。
时间复杂度为 \(t\sqrt{n}+nlogn\)
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e6+99 ,mod = 1e9+7;
int e[N+4],p[N+4],mu[N+4],tn;
void mobius(int n){
e[1]=1;mu[1]=1;
for(int i=2;i<=n;i++){
if(!e[i]){mu[i]=-1;p[++tn]=i;}
for(int j=1;j<=tn;j++){
if(i*p[j]>n) break;
mu[p[j]*i]=(i%p[j]==0 ? 0 :-mu[i]);
e[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
}
int g[N+4],T,n,m,fib[N+4];
signed main(){
freopen("fibonacci.in","r",stdin);
freopen("fibonacci.out","w",stdout);
ios::sync_with_stdio(0);cin.tie(0),cout.tie(0);
mobius(N);
cin>>T;
fib[1]=1,fib[2]=1;
for(int i=3;i<=N;i++){
fib[i]=fib[i-1]+fib[i-2];
fib[i]%=mod;
}
for(int i=1;i<=N;i++){
for(int j=i;j<=N;j+=i){
g[j]=(g[j]+fib[i]*mu[j/i]%mod+mod)%mod;
}
}
for(int i=1;i<=N;i++)
g[i]=(g[i]+g[i-1])%mod;
while(T--){
cin>>n>>m;
int ans=0;
for(int l=1,r=0;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans+(n/l)*(m/l)%mod*(g[r]-g[l-1])%mod+mod)%mod;
}
cout<<ans<<"\n";
}
return 0;
}
NOIP模拟赛T3 斐波那契的更多相关文章
- 关于斐波那契数列的一些恒等式 模板 牛客OI测试赛 A 斐波拉契
牛客A 斐波拉契 链接:https://www.nowcoder.com/acm/contest/181/A来源:牛客网 设f[i]表示斐波那契数论的第i项 f[1]=1,f[2] =1,f[i] = ...
- 20161005 NOIP 模拟赛 T3 解题报告
subset 3.1 题目描述 一开始你有一个空集,集合可以出现重复元素,然后有 Q 个操作 1. add s 在集合中加入数字 s. 2. del s 在集合中删除数字 s.保证 s 存在 3. c ...
- ztz11的noip模拟赛T3:评分系统
代码: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> ...
- 【2019.7.25 NOIP模拟赛 T3】树(tree)(dfs序列上开线段树)
没有换根操作 考虑如果没有换根操作,我们该怎么做. 我们可以求出原树的\(dfs\)序列,然后开线段树维护. 对于修改操作,我们可以倍增求\(LCA\),然后在线段树上修改子树内的值. 对于询问操作, ...
- 神奇的NOIP模拟赛 T3 LGTB 玩THD
LGTB 玩THD LGTB 最近在玩一个类似DOTA 的游戏名叫THD有一天他在守一座塔,对面的N 个小兵排成一列从近到远站在塔前面每个小兵有一定的血量hi,杀死后有一定的金钱gi每一秒,他都可以攻 ...
- 【2019.8.20 NOIP模拟赛 T3】小X的图(history)(可持久化并查集)
可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作, ...
- 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)
题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...
- [NOIP1997] P2626 斐波那契数列(升级版)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- noip模拟赛 斐波那契
分析:暴力分有90,真良心啊. a,b这么大,连图都建不出来,肯定是有一个规律.把每个点的父节点写出来:0 1 1 12 123 12345 12345678,可以发现每一个循环的长度刚好是斐波那契数 ...
随机推荐
- Tomcat 中文乱码
问题描述 tomcat9启动后会有中文乱码,比如控制台乱码: startup.bat启动时乱码: 解决方法 打开"/apache-tomcat-9.0.20/conf/logging.pro ...
- JDK8中Stream使用解析
JDK8中Stream使用解析 现在谈及JDK8的新特新,已经说不上新了.本篇介绍的就是Stream和Lambda,说的Stream可不是JDK中的IO流,这里的Stream指的是处理集合的抽象概念『 ...
- Step By Step(Lua元表与元方法)
Step By Step(Lua元表与元方法) Lua中提供的元表是用于帮助Lua数据变量完成某些非预定义功能的个性化行为,如两个table的相加.假设a和b都是table,通过元表可以定义如何计算表 ...
- js的基本数据类型和typeof的关系
JavaScript数据类型是非常简洁的,它定义了6中基本数据类型 null:空.无.表示不存在,当为对象的属性赋值为null,表示删除该属性 undefined:未定义.当声明变量却没有赋值时会显示 ...
- Mobileye_EyeQ4功能和性能
Mobileye_EyeQ4功能和性能 一.硬件平台 图丨 Mobileye EyeQ4 架构(Mobileye EyeQ4使用了多MIPS处理器) 为确保 L3 级别以上的自动驾驶汽车市场,Mobi ...
- 大尺寸卫星图像目标检测:yoloT
大尺寸卫星图像目标检测:yoloT 1. 前言 YOLT论文全称「You Only Look Twice: Rapid Multi-Scale Object Detection In Satellit ...
- TensorRT 加速性能分析
TensorRT 加速性能分析 Out-of-the-box GPU Performance 模型推理性能是什么意思?在为用户评估潜在的候选项时,不测量数据库查询和预筛选(例如决策树或手动逻辑)的贡献 ...
- nvGRAPH原理概述
nvGRAPH原理概述 nvGRAPH的API参考分析. 简介 数据分析是高性能计算的不断增长的应用.许多高级数据分析问题可以称为图形问题.反过来,当今许多常见的图形问题也可以称为稀疏线性代数.这是N ...
- 《python网络数据采集》笔记1
第一部分-创建爬虫 1.urllib 1)urllib.request request.urlopen(url) request.urlretrieve 可以根据文件的 URL 下载文件 2)urll ...
- QT基本数据类型
因为Qt是一个C++框架, 因此C++中所有的语法和数据类型在Qt中都是被支持的, 但是Qt中也定义了一些属于自己的数据类型, 下边给大家介绍一下这些基础的数类型. QT基本数据类型定义在#inclu ...