1.题目

\[\sum_{i=1}^n \sum_{j=1}^m \gcd(F_i,F_j)
\]

其中 \(F_k\) 表示斐波那契数列的第 \(k\) 项,对 \(10^9 + 7\) 取模。

多组数据。

2.题解

莫比乌斯反演板子题,但是太菜了,多做了一次反演,复杂度变为 \(tn\sqrt{n}\) 。实际是 \(t\sqrt{n}\)

直接推式子吧。

首先需要知道性质,\(\gcd(F_i,f_j)=F_{\gcd(i,j)}\)

这个性质是一道板子题,为洛谷上的斐波那契公约数,证明简单,本文略过。

\[Ans=\sum_{i=1}^n\sum_{j=1}^m \gcd(F_i,F_j)
\]
\[=\sum_{i=1}^n\sum_{j=1}^mF_{\gcd(i,j)}
\]

我们发现 \(\gcd(i,j)\) 只有可能在 \(1\sim\min(n,m)\) 于是我们可以考虑去枚举这个 \(\gcd(i,j)\) ,然后乘上所对应的值,这样既为答案。

也就是说,写成这样(假设 \(n \leq m\)):

\(f(k)\) 表示的是公约数为 \(k\) 的数量。

\[Ans=\sum_{k=1}^n F(k)f(k)
\]

问题关键在于求 \(f(k)\) 。

\[Ans =\sum_{k=1}^n F(k) \sum_{i=1}^n\sum_{j=1}^m [(i,j)=k]
\]

容易发现这就是一个嵌入式反演的变形,那么直接上莫比乌斯反演。

\[=\sum_{k=1}^n F(k) \sum_{k|i}^n\sum_{k|j}^m[(i,j)=k]
\]
\[=\sum_{k=1}^n F(k) \sum_{i=1}^{n/k}\sum_{j=1}^{m/k}[(ik,jk)=k]
\]

发现可以将 \(k\) 约掉,也就是:

\[=\sum_{k=1}^n F(k) \sum_{i=1}^{n/k}\sum_{j=1}^{m/k}[(i,j)=1]
\]

变为经典反演形式,开始进行反演。

\[Ans=\sum_{k=1}^n F(k) \sum_{i=1}^{n/k}\sum_{j=1}^{m/k} \sum_{d|(i,j)} \mu(d)
\]
\[Ans=\sum_{k=1}^n F(k) \sum_{i=1}^{n/k}\sum_{j=1}^{m/k} \sum_{{d|i,}{d|j}} \mu(d)
\]

然后改变枚举变量。

\[Ans=\sum_{k=1}^n F(k) \sum_{d=1}^{n/k} \mu(d) \sum_{d|(n/k)}\sum_{d|(m/k)}1
\]

也就是:

\[Ans=\sum_{k=1}^n F(k) \sum_{d=1}^{n/k} \mu(d) \lfloor \dfrac{n}{k} \rfloor\lfloor \dfrac{m}{k} \rfloor
\]

然后交换求和顺序,以及内部改为枚举因数,最外层枚举 \(d\) ,就有:

\[Ans=\sum_{d=1}^n \lfloor \dfrac{n}{d} \rfloor \lfloor \dfrac{m}{d} \rfloor \sum_{k|d} F_k \mu(\dfrac{k}{d})
\]

然后就预处理前缀和,然后套路整除分块回答。

时间复杂度为 \(t\sqrt{n}+nlogn\)

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e6+99 ,mod = 1e9+7;
int e[N+4],p[N+4],mu[N+4],tn;
void mobius(int n){
e[1]=1;mu[1]=1;
for(int i=2;i<=n;i++){
if(!e[i]){mu[i]=-1;p[++tn]=i;}
for(int j=1;j<=tn;j++){
if(i*p[j]>n) break;
mu[p[j]*i]=(i%p[j]==0 ? 0 :-mu[i]);
e[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
}
int g[N+4],T,n,m,fib[N+4];
signed main(){
freopen("fibonacci.in","r",stdin);
freopen("fibonacci.out","w",stdout);
ios::sync_with_stdio(0);cin.tie(0),cout.tie(0);
mobius(N);
cin>>T;
fib[1]=1,fib[2]=1;
for(int i=3;i<=N;i++){
fib[i]=fib[i-1]+fib[i-2];
fib[i]%=mod;
}
for(int i=1;i<=N;i++){
for(int j=i;j<=N;j+=i){
g[j]=(g[j]+fib[i]*mu[j/i]%mod+mod)%mod;
}
}
for(int i=1;i<=N;i++)
g[i]=(g[i]+g[i-1])%mod;
while(T--){
cin>>n>>m;
int ans=0;
for(int l=1,r=0;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans+(n/l)*(m/l)%mod*(g[r]-g[l-1])%mod+mod)%mod; }
cout<<ans<<"\n";
}
return 0;
}

NOIP模拟赛T3 斐波那契的更多相关文章

  1. 关于斐波那契数列的一些恒等式 模板 牛客OI测试赛 A 斐波拉契

    牛客A 斐波拉契 链接:https://www.nowcoder.com/acm/contest/181/A来源:牛客网 设f[i]表示斐波那契数论的第i项 f[1]=1,f[2] =1,f[i] = ...

  2. 20161005 NOIP 模拟赛 T3 解题报告

    subset 3.1 题目描述 一开始你有一个空集,集合可以出现重复元素,然后有 Q 个操作 1. add s 在集合中加入数字 s. 2. del s 在集合中删除数字 s.保证 s 存在 3. c ...

  3. ztz11的noip模拟赛T3:评分系统

    代码: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> ...

  4. 【2019.7.25 NOIP模拟赛 T3】树(tree)(dfs序列上开线段树)

    没有换根操作 考虑如果没有换根操作,我们该怎么做. 我们可以求出原树的\(dfs\)序列,然后开线段树维护. 对于修改操作,我们可以倍增求\(LCA\),然后在线段树上修改子树内的值. 对于询问操作, ...

  5. 神奇的NOIP模拟赛 T3 LGTB 玩THD

    LGTB 玩THD LGTB 最近在玩一个类似DOTA 的游戏名叫THD有一天他在守一座塔,对面的N 个小兵排成一列从近到远站在塔前面每个小兵有一定的血量hi,杀死后有一定的金钱gi每一秒,他都可以攻 ...

  6. 【2019.8.20 NOIP模拟赛 T3】小X的图(history)(可持久化并查集)

    可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作, ...

  7. 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)

    题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...

  8. [NOIP1997] P2626 斐波那契数列(升级版)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  9. noip模拟赛 斐波那契

    分析:暴力分有90,真良心啊. a,b这么大,连图都建不出来,肯定是有一个规律.把每个点的父节点写出来:0 1 1 12 123 12345 12345678,可以发现每一个循环的长度刚好是斐波那契数 ...

随机推荐

  1. Element-ui Popconfirm气泡确认框的确认及取消事件不生效

    Element-ui 官方文档对 Popconfirm气泡确认框的一些属性及事件的描述不够详细,导致第一次使用时会遇到各种各样的问题 对确定事件及取消事件描述如下: 但是如果给组件绑定@confirm ...

  2. VMware vRealize Suite 8.3 发布 - 多云环境的云计算管理解决方案

    概述 VMware vRealize Suite 是一种多云环境的云计算管理解决方案,为 IT 组织提供了一个基于 DevOps 和 ML 原则的基础架构自动化.一致运维和监管的现代平台. vReal ...

  3. 如何使用 IoC

    创建Maven工程,pom.xml添加依赖 <?xml version="1.0" encoding="UTF-8"?> <project x ...

  4. Jenkins实战应用–Jenkins构建中tag的应用

    Jenkins实战应用–Jenkins构建中tag的应用 文章目录[隐藏] *系列汇总* 1,缘起. 2,回滚功能. 1,添加mode选项. 2,再添加branch选项. 3,添加Git Parame ...

  5. 在gitlab网页上合并分支

    在gitlab网页上合并分支 使用gitlab网页将代码合并分 下面将dev分支代码合并至master 1.点击request merge 2.源分支为当前分支,目标分支默认为master,确认无误, ...

  6. 八、Pandas 表格处理

    pandas有两个数据结构,一个是series 另一个是DataFrame from matplotlib import pyplot as plt import numpy as np import ...

  7. Proteus中包含的主流单片机列举

    经常使用Proteus的朋友面临的一个问题就是,这个设计用Proteus能仿真吗?在初级阶段,我们仅仅会参考Proteus是否有对应的器件以及器件是否有仿真模型来决断这个问题.有就能仿真,没有就不能仿 ...

  8. 三维视觉惯性SLAM的有效Schmidt-EKF

    三维视觉惯性SLAM的有效Schmidt-EKF An Efficient Schmidt-EKF for 3D Visual-Inertial SLAM 论文地址: http://openaccess ...

  9. 基于NVIDIA GPUs的深度学习训练新优化

    基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用 ...

  10. Nucleus 实时操作系统中断(上)

    Nucleus 实时操作系统中断(上) Interrupts in the Nucleus SE RTOS 所有现代微处理器和微控制器都有某种中断设施.这种能力对于提供许多应用程序所需的响应能力是必不 ...