NOIP模拟赛T3 斐波那契
1.题目
求
\]
其中 \(F_k\) 表示斐波那契数列的第 \(k\) 项,对 \(10^9 + 7\) 取模。
多组数据。
2.题解
莫比乌斯反演板子题,但是太菜了,多做了一次反演,复杂度变为 \(tn\sqrt{n}\) 。实际是 \(t\sqrt{n}\)
直接推式子吧。
首先需要知道性质,\(\gcd(F_i,f_j)=F_{\gcd(i,j)}\)
这个性质是一道板子题,为洛谷上的斐波那契公约数,证明简单,本文略过。
\]
\]
我们发现 \(\gcd(i,j)\) 只有可能在 \(1\sim\min(n,m)\) 于是我们可以考虑去枚举这个 \(\gcd(i,j)\) ,然后乘上所对应的值,这样既为答案。
也就是说,写成这样(假设 \(n \leq m\)):
\(f(k)\) 表示的是公约数为 \(k\) 的数量。
\]
问题关键在于求 \(f(k)\) 。
\]
容易发现这就是一个嵌入式反演的变形,那么直接上莫比乌斯反演。
\]
\]
发现可以将 \(k\) 约掉,也就是:
\]
变为经典反演形式,开始进行反演。
\]
\]
然后改变枚举变量。
\]
也就是:
\]
然后交换求和顺序,以及内部改为枚举因数,最外层枚举 \(d\) ,就有:
\]
然后就预处理前缀和,然后套路整除分块回答。
时间复杂度为 \(t\sqrt{n}+nlogn\)
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e6+99 ,mod = 1e9+7;
int e[N+4],p[N+4],mu[N+4],tn;
void mobius(int n){
e[1]=1;mu[1]=1;
for(int i=2;i<=n;i++){
if(!e[i]){mu[i]=-1;p[++tn]=i;}
for(int j=1;j<=tn;j++){
if(i*p[j]>n) break;
mu[p[j]*i]=(i%p[j]==0 ? 0 :-mu[i]);
e[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
}
int g[N+4],T,n,m,fib[N+4];
signed main(){
freopen("fibonacci.in","r",stdin);
freopen("fibonacci.out","w",stdout);
ios::sync_with_stdio(0);cin.tie(0),cout.tie(0);
mobius(N);
cin>>T;
fib[1]=1,fib[2]=1;
for(int i=3;i<=N;i++){
fib[i]=fib[i-1]+fib[i-2];
fib[i]%=mod;
}
for(int i=1;i<=N;i++){
for(int j=i;j<=N;j+=i){
g[j]=(g[j]+fib[i]*mu[j/i]%mod+mod)%mod;
}
}
for(int i=1;i<=N;i++)
g[i]=(g[i]+g[i-1])%mod;
while(T--){
cin>>n>>m;
int ans=0;
for(int l=1,r=0;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans+(n/l)*(m/l)%mod*(g[r]-g[l-1])%mod+mod)%mod;
}
cout<<ans<<"\n";
}
return 0;
}
NOIP模拟赛T3 斐波那契的更多相关文章
- 关于斐波那契数列的一些恒等式 模板 牛客OI测试赛 A 斐波拉契
牛客A 斐波拉契 链接:https://www.nowcoder.com/acm/contest/181/A来源:牛客网 设f[i]表示斐波那契数论的第i项 f[1]=1,f[2] =1,f[i] = ...
- 20161005 NOIP 模拟赛 T3 解题报告
subset 3.1 题目描述 一开始你有一个空集,集合可以出现重复元素,然后有 Q 个操作 1. add s 在集合中加入数字 s. 2. del s 在集合中删除数字 s.保证 s 存在 3. c ...
- ztz11的noip模拟赛T3:评分系统
代码: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> ...
- 【2019.7.25 NOIP模拟赛 T3】树(tree)(dfs序列上开线段树)
没有换根操作 考虑如果没有换根操作,我们该怎么做. 我们可以求出原树的\(dfs\)序列,然后开线段树维护. 对于修改操作,我们可以倍增求\(LCA\),然后在线段树上修改子树内的值. 对于询问操作, ...
- 神奇的NOIP模拟赛 T3 LGTB 玩THD
LGTB 玩THD LGTB 最近在玩一个类似DOTA 的游戏名叫THD有一天他在守一座塔,对面的N 个小兵排成一列从近到远站在塔前面每个小兵有一定的血量hi,杀死后有一定的金钱gi每一秒,他都可以攻 ...
- 【2019.8.20 NOIP模拟赛 T3】小X的图(history)(可持久化并查集)
可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作, ...
- 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)
题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...
- [NOIP1997] P2626 斐波那契数列(升级版)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- noip模拟赛 斐波那契
分析:暴力分有90,真良心啊. a,b这么大,连图都建不出来,肯定是有一个规律.把每个点的父节点写出来:0 1 1 12 123 12345 12345678,可以发现每一个循环的长度刚好是斐波那契数 ...
随机推荐
- Element-ui Popconfirm气泡确认框的确认及取消事件不生效
Element-ui 官方文档对 Popconfirm气泡确认框的一些属性及事件的描述不够详细,导致第一次使用时会遇到各种各样的问题 对确定事件及取消事件描述如下: 但是如果给组件绑定@confirm ...
- VMware vRealize Suite 8.3 发布 - 多云环境的云计算管理解决方案
概述 VMware vRealize Suite 是一种多云环境的云计算管理解决方案,为 IT 组织提供了一个基于 DevOps 和 ML 原则的基础架构自动化.一致运维和监管的现代平台. vReal ...
- 如何使用 IoC
创建Maven工程,pom.xml添加依赖 <?xml version="1.0" encoding="UTF-8"?> <project x ...
- Jenkins实战应用–Jenkins构建中tag的应用
Jenkins实战应用–Jenkins构建中tag的应用 文章目录[隐藏] *系列汇总* 1,缘起. 2,回滚功能. 1,添加mode选项. 2,再添加branch选项. 3,添加Git Parame ...
- 在gitlab网页上合并分支
在gitlab网页上合并分支 使用gitlab网页将代码合并分 下面将dev分支代码合并至master 1.点击request merge 2.源分支为当前分支,目标分支默认为master,确认无误, ...
- 八、Pandas 表格处理
pandas有两个数据结构,一个是series 另一个是DataFrame from matplotlib import pyplot as plt import numpy as np import ...
- Proteus中包含的主流单片机列举
经常使用Proteus的朋友面临的一个问题就是,这个设计用Proteus能仿真吗?在初级阶段,我们仅仅会参考Proteus是否有对应的器件以及器件是否有仿真模型来决断这个问题.有就能仿真,没有就不能仿 ...
- 三维视觉惯性SLAM的有效Schmidt-EKF
三维视觉惯性SLAM的有效Schmidt-EKF An Efficient Schmidt-EKF for 3D Visual-Inertial SLAM 论文地址: http://openaccess ...
- 基于NVIDIA GPUs的深度学习训练新优化
基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用 ...
- Nucleus 实时操作系统中断(上)
Nucleus 实时操作系统中断(上) Interrupts in the Nucleus SE RTOS 所有现代微处理器和微控制器都有某种中断设施.这种能力对于提供许多应用程序所需的响应能力是必不 ...