组题人自己组完过后,才发现自己还是太弱了。。。


T1

简单模拟。

按照游戏规则直接模拟显然是不明智的,所以我们可以像石头剪刀布一样,将判断改变为检验。

同时,我们发现,一共只有48种牌,所以我们可以直接开一个数组记录一下,\(card[peo][col][tag]\)表示第\(peo\)个人,第\(col\)种颜色,第\(tag\)种牌型有多少张

然后,按照优先级,暴力枚举每个人的每一张牌,同时根据游戏规则进行检验,比如当此时仍有"+2"卡在传递时,除了"+2"和"turn"两种牌型牌型外其余任何牌型都不能出等等。

然后这个题目就解决啦!

Upd:有点锅,按照题意修改了一下题面(是我没表述清楚啦QAQ)

#include<bits/stdc++.h>
using namespace std;
int card[20][20][20];
int cnt[10],vis[10];
struct cc{
int lei,tim,id;
}boom[10];
bool cmp(cc x,cc y)
{
return x.lei==y.lei?x.tim<y.tim:x.lei<y.lei;
}
bool check(int col,int tag,int lstcol,int lsttag,int dl)
{
if(lstcol==-1&&lsttag==-1) return 1;
if(dl)
{
if((col==lstcol)&&(tag==12||tag==11)) return 1;
return 0;
}
else
{
if(col==lstcol||(tag==lsttag&&tag!=11&&tag!=12)) return 1;
else return 0;
}
}
int main()
{
// freopen("UnIon10.in","r",stdin);
// freopen("UnIon10.out","w",stdout);
// freopen("样例解释.out","w",stdout);
int ggg=0;
for(int i=1;i<=4;++i)
{
scanf("%d",&cnt[i]),boom[i].id=i,ggg+=cnt[i];
}
for(int i=1;i<=4;++i)
{
for(int j=1;j<=cnt[i];++j)
{
int a,b;
scanf("%d%d",&a,&b);
++card[i][a][b];
}
}
int nex=1,now=1,peo=4,dilei=0,lc=-1,lt=-1;
int ti=0;
if(!ggg)
{
printf("0 0 0 0 \nxiaoai\n");
return 0;
}
while(peo>1)
{
// printf("%d\n",peo);
if(now==0) now=4;
if(now==5) now=1;
int flag=0;
if(!cnt[now])
{
now+=nex;
continue;
}
vis[now]=1;
++ti;
for(int i=1;i<=4;++i)
{
for(int j=12;j>=1;--j)
{
if(card[now][i][j]&&check(i,j,lc,lt,dilei))
{
flag=1;
// printf("%d %d %d\n",now,i,j);
--card[now][i][j];
--cnt[now];
lc=i;
lt=j;
if(j==12) nex=-nex;
if(j==11) dilei+=2;
break;
}
}
if(flag) break;
}
if(!cnt[now]) --peo,boom[now].tim=ti;
if(!flag) ++boom[now].lei,lc=-1,lt=-1,boom[now].lei+=dilei,dilei=0;
now+=nex;
}
while(!cnt[now])
{
now+=nex;
if(now==0) now=4;
if(now==5) now=1;
}
boom[now].lei+=dilei;
for(int i=1;i<=4;++i)
boom[i].lei+=cnt[i],printf("%d ",boom[i].lei);
sort(boom+1,boom+5,cmp);
printf("\n");
if(boom[1].id==1) puts("xiaoai");
else if(boom[1].id==2) puts("Yoyo");
else if(boom[1].id==3) puts("Siri");
else if(boom[1].id==4) puts("Bixby");
return 0;
}

T2

这是一道二合一的题目。

简单二分 (三分)+简单背包

首先,只要你学过背包就一定能看出这是一个背包问题,还是一个放满背包问题。

在这里就不细说了,简单讲一讲前面的部分

\[ f(x)=x^x
\]

已知\(f(x)\),求较小的\(x\)

首先,我们可以将这个函数的图像画出来 比赛时这么做的打死

可以很清晰的看到在这个函数当中有一个最低点,跟二次函数类似。

那,怎样求最低点呢?

标准解法:三分法

可以右转洛谷模板区

对于一个在\([l,r]\)区间上存在最值的函数\(f(x)\),都可以用三分法解决。

观察这张图,就可以轻松找到规律(转载声明,感谢图片)

1、当 f(mid) > f(mmid)     mmid 一定在白点的右边。

2、当 f(mid) < f(mmid)      mid 一定在白点的左边。

然后就可以愉快的三分了

非标准解法:枚举法

我们将函数图像进一步放大,或者也可以通过函数有关的知识可以得到,这个最低点一定在01之间,所以,题目要求保留5位小数,我们可以枚举67位小数,取其中得到的最小值,同样可以得到答案。


找到最低点之后,我们发现,在最低点左边的部分单调,在最低点右边的部分也单调,所以我们可以采取分段二分的方式,针对不同的数据范围,进行方向调整不同的二分,就可以求出每个小面包所需要的最低成本,然后以其为价值,进行dp即可。

于是这道题目也被解决了。

#include<bits/stdc++.h>
#define eps 1e-9
#define low 0.36787897
using namespace std;
const int maxn=200000;
int n;
long double l,r=20;
double fff(double x){return pow(x,x);}
double solve(double x)
{
l=0,r=20;
if(x<1)
{
r=low;
while(r-l>eps)
{
double mid=(l+r)/2.0;
if(fff(mid)>x) l=mid;
else r=mid;
}
return l;
}
else
{
l=low;
while(r-l>eps)
{
double mid=(l+r)/2.0;
if(fff(mid)<x) l=mid;
else r=mid;
}
return l;
}
}
int c[maxn];
double v[maxn],f[maxn];
int opt;
int main()
{
freopen("baker.in","r",stdin);
freopen("baker.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)
scanf("%lf%d",&v[i],&c[i]),v[i]=solve(v[i]);
for(int i=1;i<=20000;++i)
f[i]=(double)998244353;
f[0]=0;
for(int i=1;i<=n;++i)
for(int j=c[i];j<=20000;++j)
f[j]=min(f[j],f[j-c[i]]+v[i]);
for(int i=1;i<=m;++i)
{
scanf("%d",&opt);
while(f[opt]==998244353&&opt>0) --opt;
if(opt==0) printf("-1T^T1-\n");
else printf("%d %.5lf\n",opt,f[opt]);
}
return 0;
}

T3

老实说,这是我扒的原题,因为解法太多,也有值得借鉴的地方,就搬过来了。

简化版题意:求一个区间内的众数,且出现次数在区间中超过区间长度的一半。

首先,因为我是分块讲课人,自然要让大家学以致用。

使用分块,可以得到80%左右的分数,因为空间开不下,时间也不够。

使用莫队,可以得到86分,剩下14分,被我卡掉了。

开不开心,激不激动?


首先介绍一个知识

摩尔投票法

非常通俗的说,两群人打架,里面每个人都属于某一个帮派,现在两两PK,若是同一个帮派则握手平局,否则便两人皆淘汰。这样的话,很自然的可以得出,只要某一个帮派人数超过了总人数的1/2,就可以赢得比赛胜利。

摩尔投票法就是这样一个思想。

由于作者时间所限,给出题目链接:

P2397


利用这种方法,可以轻松通过m=1的数据。

下面抛出一个问题,摩尔投票法具有可加性吗?

答案是肯定的。

那我们可以用什么进行维护呢?

当然是线段树辣!!

这个东西,我们在后面会进一步提到。

但是,用线段树维护并不能保证找到的一定是正确的解。

所以我们需要对每一个数字开一个vector,记录其位置,然后检验一下,不成功就输出0

时间复杂度为\(O(nlogn)\)

记得我在讲搜索的时候,讲了一种剪枝方法——随机化剪枝,从此很多人就走上了不归路。

更进一步

既然维护了线段树都需要检验,可不可以不维护,直接进行检验呢?

我们先来解决这样一个数学问题:一个口袋里10个球,5红,5蓝,连续摸n次(放回),一次都摸不到红球的概率是?

显然,答案为\(1/2^{n}\)

那么,是不是,只要n足够大,就可以看作一定能摸到呢?

对于本题来说,可以,如果你的n到达到了20,就已经超出了这个范围,可以看作无错。

于是这个题目就解决啦!!

原题链接:P3567

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=6e5+10;
vector<int> pos[maxn];
int v[maxn];
bool vis[maxn];
int s[maxn],cnt;
int random(int x)
{
return 1ll*rand()*233%x;
}
int main()
{
// freopen("randerlng.in","r",stdin);
// freopen("randerlng.out","w",stdout);
srand(time(0));
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)
scanf("%d",&v[i]),pos[v[i]].push_back(i);
for(int i=1;i<=m;++i)
{
int x,y,flag=1;
scanf("%d%d",&x,&y);
for(int j=1;j<=20;++j)
{
int now=v[x+random((y-x+1))];
if(vis[now]) continue;
vis[now]=1;
s[++cnt]=now;
if(pos[now].size()<=((y-x+1)/2)) continue;
int num=upper_bound(pos[now].begin(),pos[now].end(),y)-lower_bound(pos[now].begin(),pos[now].end(),x);
if(num>(y-x+1)/2)
{
printf("%d\n",now);
flag=0;
break;
}
}
while(cnt) vis[s[cnt]]=0,--cnt;
if(flag)
puts("0");
}
return 0;
}

拓展

按照作者的本意,本题还应该要支持修改操作(但是由于用现有知识复杂度不严格取消了),应该怎么办呢?

按照随机的做法,我们只需要将vector中的保存的位置删除再添加即可,但这样做是\(O(n)\)的。

于是我们需要用平衡树来解决这个问题。

具体见此题:P3765

于是这场比赛就完了。

总结

这场比赛还是太水啦

估计:每人至少150pts+?

下次一定会难一点的,毕竟地球还在流浪嘛(手动狗头)

XDFZOI 月赛 201905 Sliver的更多相关文章

  1. fzu月赛 2203 单纵大法好 二分

    Accept: 8    Submit: 18Time Limit: 5000 mSec    Memory Limit : 65536 KB  Problem Description 人在做,天在看 ...

  2. FZU2138-久违的月赛之一

    Problem Description 好久没举月赛了,这次lqw给大家出了5道题,因为hsy学长宣传的很到位,吸引了n个DDMM们来做,另一位kk学长说,全做对的要给金奖,做对4题要给银奖,做对3题 ...

  3. USACO月赛数据

    终于找到了usaco月赛的数据…… 根据月赛的名称,我们可以写出数据地址.比如08年一月的月赛即是:http://contest.usaco.org/JAN08  这里要注意区分大小写.

  4. 月赛-Crackhash

    Crackhash 这个题目是我为月赛出的,完全仿照自mma 1st simple_hash. 这道题目比较有意思的地方在于在32位的程序中模拟了64位的算术运算. 题目的思路很清晰.要求输入全为数字 ...

  5. USACO全部月赛及GateWay数据

    月赛: 以07年open为例,网站如下 http://contest.usaco.org/OPEN07 其他的格式是http://contest.usaco.org/月份(月份的英文前三位,比如1月是 ...

  6. [BZOJ 4832][lydsy 4月赛] 抵制克苏恩

    题面贴一发 [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 443  Solved: 164[Submit][ ...

  7. [补档][Lydsy2017年4月月赛]抵制克苏恩

    [Lydsy2017年4月月赛]抵制克苏恩 题目 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平. 如果你不玩炉石传说,不必担心,小Q同学会告诉你所有相关的细节.炉石传说是这样的一 ...

  8. 洛谷4月月赛R2

    洛谷4月月赛R2 打酱油... A.koishi的数学题  线性筛约数和就可以\(O(N)\)了... #include <iostream> #include <cstdio> ...

  9. 洛谷3月月赛 R1 Step! ZERO to ONE

    洛谷3月月赛 R1 Step! ZERO to ONE 普及组难度 290.25/310滚粗 t1 10分的日语翻译题....太难了不会... t2 真·普及组.略 注意长为1的情况 #include ...

随机推荐

  1. Web前端自动化测试Cypress实践总结

    本文主要首先主要介绍了什么是自动化测试,接着对常用的自动化测试框架进行了对比分析,最后,介绍了如果将自动化测试框架Cypress运用在项目中. 一.自动化测试概述 为了保障软件质量,并减少重复性的测试 ...

  2. 限流&熔断的考量

    限流的原则,是尽量在流量源头限,并且是需要依据现有团队所掌握的技能来. 如上最左侧便是主要流量的来源入口,首先就要限制的地方就是slb节点的income流量 slb节点的流量特点是啥?加限流怎么加?限 ...

  3. Python+Selenium学习笔记11 - python官网的tutorial - 定义函数

    1 def f(a, L=[]): 2 L.append(a) 3 return L 4 5 print f(5) 6 print f(2) 输出 1 def f(a, L=None): 2 if L ...

  4. CUDA运行时 Runtime(二)

    CUDA运行时 Runtime(二) 一. 概述 下面的代码示例是利用共享内存的矩阵乘法的实现.在这个实现中,每个线程块负责计算C的一个方子矩阵C sub,块内的每个线程负责计算Csub的一个元素.如 ...

  5. JVM-gcRoots 和 强引用,软引用, 弱引用, 虚引用, 代码演示和应用场景

    什么是垃圾? 什么是gcRoots, 谈谈你对 强, 软, 弱 , 虚引用的理解, 他们的应用场景 jvm采用可达性分析法: 从gcRoots集合开始,自上向下遍历,凡是在引用链上的对象,都不是垃圾, ...

  6. 10: java数据结构和算法: 构建哈夫曼树, 获取哈夫曼编码, 使用哈夫曼编码原理对文件压缩和解压

    最终结果哈夫曼树,如图所示: 直接上代码: public class HuffmanCode { public static void main(String[] args) { //获取哈夫曼树并显 ...

  7. 如何使用perf进行程序分析

    1.安装. sudo apt-get install linux-tools 如果提示没有可安装候选.请输入: sudo apt-get install linux-perf-version 其中ve ...

  8. WebClient (史上最全)

    疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 面试必备 + 面试必备 [博客园总入口 ] 疯狂创客圈 经典图书 : <Sprin ...

  9. 2020想进大厂你不得不了解的MySQL意外事件的查询技巧

    导读:数据库是导致应用系统运行缓慢的常见原因.面对数据库引性能问题,很多开发者或者DBA却束手无策.本文作者经过多年的实际经验,整理了一些材料,将Linux环境下MySQL性能突发事件问题排查技巧分享 ...

  10. xshell连接时报错:Could not connect to '192.168.2.125' (port 22): Connection failed.

    解决思路: 1.首先用主机ping下虚拟机IP,看是否能ping通 2.如果ping不通就看虚拟机防火墙是否开启,service iptables status [root@mysql ~]# ser ...