CF1330B题解
题意:
给定一个长为 \(n\) 序列 \(a\) ,问是否能分成两个排列,并输出方案
(排列:从 \(1—n\) 中选取不同的 \(n\) 个元素组成的序列)
思路:
观察数据范围可以猜出,这题 \(O(n)\) 能解决;
因为两个排列是不重叠的,所以可以考虑分别枚举 \(a_1—a_l\) 是否能组成 \(1—l\) 的排列,\(a_{l+1}—a_n\) 是否能构成排列,那么就用 \(l_i\) 表示 前\(i\) 个数是否能形成一个排列,\(r_i\) 表示后 \(i\) 个数是否能形成排列,当 \(l_i\) 与 \(r_{i+1}\) 同时为真的时候可行,输出 \(i\) 和 \(n-i\) 即可;
此题还有一个重要的难题,就是如何判断是一个排列:
比如判断前 \(i\) 个数是否为排列
- 必然有前 \(i\) 个数的最大值为 \(i\) ;
- 任意小于 \(i\) 的数出现且只出现一次;
当上面两条都成立时必然为一个排列,具体实现见代码。
尽管以上已经为 \(O(n)\) 的可行算法,但是为了实现方便,可以加一些优化:
因为要分成两个排列,所以序列 \(a\) 的最大值 \(maxn\) 必然在一个排列中,\(n-maxn\) 必然存在与另一个排列中,所以一个排列的长度为 \(maxn\),另一个为 \(n-maxn\) ,这说明了最多只存在两种方案;
因为最多只有两种方案,所以若某一数字出现两次以上,必然不存在方案。
代码:
cin>>t;
while(t--)
{
memset(vis,0,sizeof(vis));
memset(l,0,sizeof(l));
memset(r,0,sizeof(r));
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
int num=0,maxx=0;
for(int i=1;i<=n;i++)
{
maxx=max(maxx,a[i]);
if(vis[a[i]]) continue;
if(a[i]<=maxx)
vis[a[i]]=1,num++;
if(num==maxx&&num==i) l[i]=true;
}
num=0,maxx=0;
for(int i=n;i>=1;i--)
{
maxx=max(maxx,a[i]);
if(vis[a[i]]) continue;
if(a[i]<=maxx)
vis[a[i]]=1,num++;
if(num==maxx&&num==(n-i+1)) r[i]=true;
}
memset(vis,0,sizeof(vis));
int ans=0;
for(int i=1;i<=n-1;i++)
if(l[i]&&r[i+1]) ans++;
cout<<ans<<endl;
for(int i=1;i<=n-1;i++)
if(l[i]&&r[i+1]) cout<<i<<" "<<n-i<<endl;
}
CF1330B题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- TSR交通标志检测与识别
TSR交通标志检测与识别 说明: 传统图像处理算法的TSR集成在在ARM+DSP上运行,深度学习开发的TSR集成到FPGA上运行. 输入输出接口 Input: (1)图像视频分辨率(整型int) (2 ...
- ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测
ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测 STD: Sparse-to-Dense 3D Object Detector for Point Cloud 论文链 ...
- 视觉SLAM的主要功能模块分析
视觉SLAM的主要功能模块分析 一.基本概念 SLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and L ...
- ISP算法高水平分析(下)
ISP算法高水平分析(下) 十.LSC(Lens Shade Correction)------镜头阴影矫正 Lens Shading指画面四角由于入射光线不足形成的暗角,同时,由于不同频率的光折射 ...
- 对端边缘云网络计算模式:透明计算、移动边缘计算、雾计算和Cloudlet
对端边缘云网络计算模式:透明计算.移动边缘计算.雾计算和Cloudlet 概要 将数据发送到云端进行分析是过去几十年的一个突出趋势,推动了云计算成为主流计算范式.然而,物联网时代设备数量和数据流量的急 ...
- node和gulp版本的坑
现在node版本最新的稳定版在14+ 然后我在接手项目的时候使用gulp打包,怎么也打包不了,这个问题纠结了挺久,然后百度了下,发现版本的问题 node 12+ 以上的版本不兼容 gulp 3的版本 ...
- postgresql无序uuid性能测试
无序uuid对数据库的影响 由于最近在做超大表的性能测试,在该过程中发现了无序uuid做主键对表插入性能有一定影响.结合实际情况发现当表的数据量越大,对表插入性能的影响也就越大. 测试环境 Postg ...
- 谈谈stream的运行原理
害,别误会,我这里说的stream不是流式编程,不是大数据处理框架.我这里说的是stream指的是jdk中的一个开发工具包stream. 该工具包在jdk8中出现,可以说已经是冷饭了,为何还要你说?只 ...
- 性能工具之Jmeter-Dubbo脚本开发
内容目录: 1.idea 环境项目部署 2.nacos 环境部署 3.dubbo插件部署 4.不带参数请求 5.带参参数请求 Apache Dubbo 是一款高性能.轻量级的开源Java RPC框架 ...
- raft 图解 (秒懂)
文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...