简介

平衡二叉搜索树是一种特殊的二叉搜索树。为什么会有平衡二叉搜索树呢?

考虑一下二叉搜索树的特殊情况,如果一个二叉搜索树所有的节点都是右节点,那么这个二叉搜索树将会退化成为链表。从而导致搜索的时间复杂度变为O(n),其中n是二叉搜索树的节点个数。

而平衡二叉搜索树正是为了解决这个问题而产生的,它通过限制树的高度,从而将时间复杂度降低为O(logn)。

AVL的特性

在讨论AVL的特性之前,我们先介绍一个概念叫做平衡因子,平衡因子表示的是左子树和右子树的高度差。

如果平衡因子=0,表示这是一个完全平衡二叉树。

如果平衡因子=1,那么这棵树就是平衡二叉树AVL。

也就是是说AVL的平衡因子不能够大于1。

先看一个AVL的例子:

总结一下,AVL首先是一个二叉搜索树,然后又是一个二叉平衡树。

AVL的构建

有了AVL的特性之后,我们看下AVL是怎么构建的。

public class AVLTree {

    //根节点
Node root; class Node {
int data; //节点的数据
int height; //节点的高度
Node left;
Node right; public Node(int data) {
this.data = data;
left = right = null;
}
}

同样的,AVL也是由各个节点构成的,每个节点拥有data,left和right几个属性。

因为是二叉平衡树,节点是否平衡还跟节点的高度有关,所以我们还需要定义一个height作为节点的高度。

在来两个辅助的方法,一个是获取给定的节点高度:

//获取给定节点的高度
int height(Node node) {
if (node == null)
return 0;
return node.height;
}

和获取平衡因子:

//获取平衡因子
int getBalance(Node node) {
if (node == null)
return 0;
return height(node.left) - height(node.right);
}

AVL的搜索

AVL的搜索和二叉搜索树的搜索方式是一致的。

先看一个直观的例子,怎么在AVL中搜索到7这个节点:

搜索的基本步骤是:

  1. 从根节点15出发,比较根节点和搜索值的大小
  2. 如果搜索值小于节点值,那么递归搜索左侧树
  3. 如果搜索值大于节点值,那么递归搜索右侧树
  4. 如果节点匹配,则直接返回即可。

相应的java代码如下:

//搜索方法,默认从根节点搜索
public Node search(int data){
return search(root,data);
} //递归搜索节点
private Node search(Node node, int data)
{
// 如果节点匹配,则返回节点
if (node==null || node.data==data)
return node; // 节点数据大于要搜索的数据,则继续搜索左边节点
if (node.data > data)
return search(node.left, data); // 如果节点数据小于要搜素的数据,则继续搜索右边节点
return search(node.right, data);
}

AVL的插入

AVL的插入和BST的插入是一样的,不过插入之后有可能会导致树不再平衡,所以我们需要做一个再平衡的步骤。

看一个直观的动画:

插入的逻辑是这样的:

  1. 从根节点出发,比较节点数据和要插入的数据
  2. 如果要插入的数据小于节点数据,则递归左子树插入
  3. 如果要插入的数据大于节点数据,则递归右子树插入
  4. 如果根节点为空,则插入当前数据作为根节点

插入数据之后,我们需要做再平衡。

再平衡的逻辑是这样的:

  1. 从插入的节点向上找出第一个未平衡的节点,这个节点我们记为z
  2. 对z为根节点的子树进行旋转,得到一个平衡树。

根据以z为根节点的树的不同,我们有四种旋转方式:

  • left-left:

如果是left left的树,那么进行一次右旋就够了。

右旋的步骤是怎么样的呢?

  1. 找到z节点的左节点y
  2. 将y作为旋转后的根节点
  3. z作为y的右节点
  4. y的右节点作为z的左节点
  5. 更新z的高度

相应的代码如下:

Node rightRotate(Node node) {
Node x = node.left;
Node y = x.right; // 右旋
x.right = node;
node.left = y; // 更新node和x的高度
node.height = max(height(node.left), height(node.right)) + 1;
x.height = max(height(x.left), height(x.right)) + 1; // 返回新的x节点
return x;
}
  • right-right:

如果是right-right形式的树,需要经过一次左旋:

左旋的步骤正好和右旋的步骤相反:

  1. 找到z节点的右节点y
  2. 将y作为旋转后的根节点
  3. z作为y的左节点
  4. y的左节点作为z的右节点
  5. 更新z的高度

相应的代码如下:

//左旋
Node leftRotate(Node node) {
Node x = node.right;
Node y = x.left; //左旋操作
x.left = node;
node.right = y; // 更新node和x的高度
node.height = max(height(node.left), height(node.right)) + 1;
x.height = max(height(x.left), height(x.right)) + 1; // 返回新的x节点
return x;
}
  • left-right:

如果是left right的情况,需要先进行一次左旋将树转变成left left格式,然后再进行一次右旋,得到最终结果。

  • right-left:

如果是right left格式,需要先进行一次右旋,转换成为right right格式,然后再进行一次左旋即可。

现在问题来了,怎么判断一个树到底是哪种格式呢?我们可以通过获取平衡因子和新插入的数据比较来判断:

  1. 如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较新插入的data和node.left.data的大小

    如果data < node.left.data,表示是left left的情况,只需要一次右旋即可

    如果data > node.left.data,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋

  2. 如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较新插入的data和node.right.data的大小

    如果data > node.right.data,表示是Right Right的情况,只需要一次左旋即可

    如果data < node.left.data,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋

插入节点的最终代码如下:

//插入新节点,从root开始
public void insert(int data){
root=insert(root, data);
} //遍历插入新节点
Node insert(Node node, int data) { //先按照普通的BST方法插入节点
if (node == null)
return (new Node(data)); if (data < node.data)
node.left = insert(node.left, data);
else if (data > node.data)
node.right = insert(node.right, data);
else
return node; //更新节点的高度
node.height = max(height(node.left), height(node.right)) + 1; //判断节点是否平衡
int balance = getBalance(node); //节点不平衡有四种情况
//1.如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较新插入的data和node.left.data的大小
//如果data < node.left.data,表示是left left的情况,只需要一次右旋即可
//如果data > node.left.data,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
//2.如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较新插入的data和node.right.data的大小
//如果data > node.right.data,表示是Right Right的情况,只需要一次左旋即可
//如果data < node.left.data,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋 //left left
if (balance > 1 && data < node.left.data)
return rightRotate(node); // Right Right
if (balance < -1 && data > node.right.data)
return leftRotate(node); // Left Right
if (balance > 1 && data > node.left.data) {
node.left = leftRotate(node.left);
return rightRotate(node);
} // Right Left
if (balance < -1 && data < node.right.data) {
node.right = rightRotate(node.right);
return leftRotate(node);
} //返回插入后的节点
return node;
}

AVL的删除

AVL的删除和插入类似。

首先按照普通的BST删除,然后也需要做再平衡。

看一个直观的动画:

删除之后,节点再平衡也有4种情况:

  1. 如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较左节点的平衡因子

    如果左节点的平衡因子>=0,表示是left left的情况,只需要一次右旋即可

    如果左节点的平衡因<0,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋

  2. 如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较右节点的平衡因子

    如果右节点的平衡因子<=0,表示是Right Right的情况,只需要一次左旋即可

    如果右节点的平衡因子>0,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋

相应的代码如下:

Node delete(Node node, int data)
{
//Step 1. 普通BST节点删除
// 如果节点为空,直接返回
if (node == null)
return node; // 如果值小于当前节点,那么继续左节点删除
if (data < node.data)
node.left = delete(node.left, data); //如果值大于当前节点,那么继续右节点删除
else if (data > node.data)
node.right = delete(node.right, data); //如果值相同,那么就是要删除的节点
else
{
// 如果是单边节点的情况
if ((node.left == null) || (node.right == null))
{
Node temp = null;
if (temp == node.left)
temp = node.right;
else
temp = node.left; //没有子节点的情况
if (temp == null)
{
node = null;
}
else // 单边节点的情况
node = temp;
}
else
{ //非单边节点的情况
//拿到右侧节点的最小值
Node temp = minValueNode(node.right);
//将最小值作为当前的节点值
node.data = temp.data;
// 将该值从右侧节点删除
node.right = delete(node.right, temp.data);
}
} // 如果节点为空,直接返回
if (node == null)
return node; // step 2: 更新当前节点的高度
node.height = max(height(node.left), height(node.right)) + 1; // step 3: 获取当前节点的平衡因子
int balance = getBalance(node); // 如果节点不再平衡,那么有4种情况
//1.如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较左节点的平衡因子
//如果左节点的平衡因子>=0,表示是left left的情况,只需要一次右旋即可
//如果左节点的平衡因<0,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
//2.如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较右节点的平衡因子
//如果右节点的平衡因子<=0,表示是Right Right的情况,只需要一次左旋即可
//如果右节点的平衡因子>0,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋
// Left Left Case
if (balance > 1 && getBalance(node.left) >= 0)
return rightRotate(node); // Left Right Case
if (balance > 1 && getBalance(node.left) < 0)
{
node.left = leftRotate(node.left);
return rightRotate(node);
} // Right Right Case
if (balance < -1 && getBalance(node.right) <= 0)
return leftRotate(node); // Right Left Case
if (balance < -1 && getBalance(node.right) > 0)
{
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}

本文的代码地址:

learn-algorithm

本文收录于 http://www.flydean.com/11-algorithm-avl-tree/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

看动画学算法之:平衡二叉搜索树AVL Tree的更多相关文章

  1. 平衡二叉搜索树AVL

    package com.sunshine.AlgorithmTemplate; import com.sunshine.OFFER66_SECOND.BalanceTreeNode; import c ...

  2. 平衡二叉搜索树/AVL二叉树 C实现

    //AVTree.h #ifndef MY_AVLTREE_H #define MY_AVLTREE_H typedef int ElementType; struct TreeNode { Elem ...

  3. 算法:非平衡二叉搜索树(UnBalanced Binary Search Tree)

    背景 很多场景下都需要将元素存储到已排序的集合中.用数组来存储,搜索效率非常高: O(log n),但是插入效率比较低:O(n).用链表来存储,插入效率和搜索效率都比较低:O(n).如何能提供插入和搜 ...

  4. Java与算法之(13) - 二叉搜索树

    查找是指在一批记录中找出满足指定条件的某一记录的过程,例如在数组{ 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 }中查找数字15,实现代码很简单 ...

  5. 二叉搜索树、AVL平衡二叉搜索树、红黑树、多路查找树

    1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要 ...

  6. 手写AVL平衡二叉搜索树

    手写AVL平衡二叉搜索树 二叉搜索树的局限性 先说一下什么是二叉搜索树,二叉树每个节点只有两个节点,二叉搜索树的每个左子节点的值小于其父节点的值,每个右子节点的值大于其左子节点的值.如下图: 二叉搜索 ...

  7. convert sorted list to binary search tree(将有序链表转成平衡二叉搜索树)

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

  8. LeetCode 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树

    第108题 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10 ...

  9. 树-二叉搜索树-AVL树

    树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路 ...

随机推荐

  1. 阿里云搭建elk

    参考了阿里云搭建ELK日志平台安装过程. 系统环境 阿里云ECS 2C2G CentOS 7.6 请确保机器配置至少4G!!! 配置秘钥 1.下载并安装公共签名密钥 [root@aliplay ~]# ...

  2. ubuntu软件工具推荐

    时间:2019-04-11 记录:PangYuaner 标题:串口调试利器--Minicom配置及使用详解 地址:https://www.cnblogs.com/wonux/p/5897127.htm ...

  3. 如何实现CSS限制字数,超出部份显示省略号

    <div style="width:200px; white-space:nowrap;overflow:hidden;text-overflow:ellipsis; border:1 ...

  4. 小程序 读取照片 EXIF 元信息

    安装 exif.js npm install exif-js --save UI <button type="primary" @click="onExif&quo ...

  5. SQLServer数据实时同步PostgreSQL

    SQLServer数据实时同步至PostgreSQL 前言: 为迎合工作需求有时候传送的数据保存在SQLServer中但由于工作需要需要保存到PostgreSQL中进行处理,本文主要通过在SQLSer ...

  6. Tricks

    由于本人着实有些菜,因此在此积累一些巧妙的 \(Tricks\) ,以备不时之需... 与其说是 \(Tricks\) 不如说是学习笔记?? 数学 组合数 常见的数列 斐波那契数列 图论 树论 \(P ...

  7. Flask - 解决 app.run() 添加 host、port、debug 参数后运行不生效的问题

    问题背景 app.run() 添加了 host.port.debug 参数,运行后发现没有生效,咋肥事! 解决方案 要打开 debug 模式的话,勾选 FLASK_DEBUG 就好啦 再次运行,发现已 ...

  8. 简单内存池的C实现

    1. 序言 对于程序开发人员来说,会经常听到这种"池"的概念,例如"进程池","线程池","内存池"等,虽然很多时没有吃 ...

  9. IMAP协议笔记

    1. IMAP客户端接收流程简介 1) 遍历所有的邮箱,获取邮箱状态,然后遍历所有邮箱获取到更新的邮件头部信息(包含收件人.发件人.主题.以及时间信息) 2)获取最新邮件的完整信息,其中也包括在第一步 ...

  10. 机器学习——正则化方法Dropout

    1 前言 2012年,Dropout的想法被首次提出,受人类繁衍后代时男女各一半基因进行组合产生下一代的启发,论文<Dropout: A Simple Way to Prevent Neural ...