简介

平衡二叉搜索树是一种特殊的二叉搜索树。为什么会有平衡二叉搜索树呢?

考虑一下二叉搜索树的特殊情况,如果一个二叉搜索树所有的节点都是右节点,那么这个二叉搜索树将会退化成为链表。从而导致搜索的时间复杂度变为O(n),其中n是二叉搜索树的节点个数。

而平衡二叉搜索树正是为了解决这个问题而产生的,它通过限制树的高度,从而将时间复杂度降低为O(logn)。

AVL的特性

在讨论AVL的特性之前,我们先介绍一个概念叫做平衡因子,平衡因子表示的是左子树和右子树的高度差。

如果平衡因子=0,表示这是一个完全平衡二叉树。

如果平衡因子=1,那么这棵树就是平衡二叉树AVL。

也就是是说AVL的平衡因子不能够大于1。

先看一个AVL的例子:

总结一下,AVL首先是一个二叉搜索树,然后又是一个二叉平衡树。

AVL的构建

有了AVL的特性之后,我们看下AVL是怎么构建的。

public class AVLTree {

    //根节点
Node root; class Node {
int data; //节点的数据
int height; //节点的高度
Node left;
Node right; public Node(int data) {
this.data = data;
left = right = null;
}
}

同样的,AVL也是由各个节点构成的,每个节点拥有data,left和right几个属性。

因为是二叉平衡树,节点是否平衡还跟节点的高度有关,所以我们还需要定义一个height作为节点的高度。

在来两个辅助的方法,一个是获取给定的节点高度:

//获取给定节点的高度
int height(Node node) {
if (node == null)
return 0;
return node.height;
}

和获取平衡因子:

//获取平衡因子
int getBalance(Node node) {
if (node == null)
return 0;
return height(node.left) - height(node.right);
}

AVL的搜索

AVL的搜索和二叉搜索树的搜索方式是一致的。

先看一个直观的例子,怎么在AVL中搜索到7这个节点:

搜索的基本步骤是:

  1. 从根节点15出发,比较根节点和搜索值的大小
  2. 如果搜索值小于节点值,那么递归搜索左侧树
  3. 如果搜索值大于节点值,那么递归搜索右侧树
  4. 如果节点匹配,则直接返回即可。

相应的java代码如下:

//搜索方法,默认从根节点搜索
public Node search(int data){
return search(root,data);
} //递归搜索节点
private Node search(Node node, int data)
{
// 如果节点匹配,则返回节点
if (node==null || node.data==data)
return node; // 节点数据大于要搜索的数据,则继续搜索左边节点
if (node.data > data)
return search(node.left, data); // 如果节点数据小于要搜素的数据,则继续搜索右边节点
return search(node.right, data);
}

AVL的插入

AVL的插入和BST的插入是一样的,不过插入之后有可能会导致树不再平衡,所以我们需要做一个再平衡的步骤。

看一个直观的动画:

插入的逻辑是这样的:

  1. 从根节点出发,比较节点数据和要插入的数据
  2. 如果要插入的数据小于节点数据,则递归左子树插入
  3. 如果要插入的数据大于节点数据,则递归右子树插入
  4. 如果根节点为空,则插入当前数据作为根节点

插入数据之后,我们需要做再平衡。

再平衡的逻辑是这样的:

  1. 从插入的节点向上找出第一个未平衡的节点,这个节点我们记为z
  2. 对z为根节点的子树进行旋转,得到一个平衡树。

根据以z为根节点的树的不同,我们有四种旋转方式:

  • left-left:

如果是left left的树,那么进行一次右旋就够了。

右旋的步骤是怎么样的呢?

  1. 找到z节点的左节点y
  2. 将y作为旋转后的根节点
  3. z作为y的右节点
  4. y的右节点作为z的左节点
  5. 更新z的高度

相应的代码如下:

Node rightRotate(Node node) {
Node x = node.left;
Node y = x.right; // 右旋
x.right = node;
node.left = y; // 更新node和x的高度
node.height = max(height(node.left), height(node.right)) + 1;
x.height = max(height(x.left), height(x.right)) + 1; // 返回新的x节点
return x;
}
  • right-right:

如果是right-right形式的树,需要经过一次左旋:

左旋的步骤正好和右旋的步骤相反:

  1. 找到z节点的右节点y
  2. 将y作为旋转后的根节点
  3. z作为y的左节点
  4. y的左节点作为z的右节点
  5. 更新z的高度

相应的代码如下:

//左旋
Node leftRotate(Node node) {
Node x = node.right;
Node y = x.left; //左旋操作
x.left = node;
node.right = y; // 更新node和x的高度
node.height = max(height(node.left), height(node.right)) + 1;
x.height = max(height(x.left), height(x.right)) + 1; // 返回新的x节点
return x;
}
  • left-right:

如果是left right的情况,需要先进行一次左旋将树转变成left left格式,然后再进行一次右旋,得到最终结果。

  • right-left:

如果是right left格式,需要先进行一次右旋,转换成为right right格式,然后再进行一次左旋即可。

现在问题来了,怎么判断一个树到底是哪种格式呢?我们可以通过获取平衡因子和新插入的数据比较来判断:

  1. 如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较新插入的data和node.left.data的大小

    如果data < node.left.data,表示是left left的情况,只需要一次右旋即可

    如果data > node.left.data,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋

  2. 如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较新插入的data和node.right.data的大小

    如果data > node.right.data,表示是Right Right的情况,只需要一次左旋即可

    如果data < node.left.data,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋

插入节点的最终代码如下:

//插入新节点,从root开始
public void insert(int data){
root=insert(root, data);
} //遍历插入新节点
Node insert(Node node, int data) { //先按照普通的BST方法插入节点
if (node == null)
return (new Node(data)); if (data < node.data)
node.left = insert(node.left, data);
else if (data > node.data)
node.right = insert(node.right, data);
else
return node; //更新节点的高度
node.height = max(height(node.left), height(node.right)) + 1; //判断节点是否平衡
int balance = getBalance(node); //节点不平衡有四种情况
//1.如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较新插入的data和node.left.data的大小
//如果data < node.left.data,表示是left left的情况,只需要一次右旋即可
//如果data > node.left.data,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
//2.如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较新插入的data和node.right.data的大小
//如果data > node.right.data,表示是Right Right的情况,只需要一次左旋即可
//如果data < node.left.data,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋 //left left
if (balance > 1 && data < node.left.data)
return rightRotate(node); // Right Right
if (balance < -1 && data > node.right.data)
return leftRotate(node); // Left Right
if (balance > 1 && data > node.left.data) {
node.left = leftRotate(node.left);
return rightRotate(node);
} // Right Left
if (balance < -1 && data < node.right.data) {
node.right = rightRotate(node.right);
return leftRotate(node);
} //返回插入后的节点
return node;
}

AVL的删除

AVL的删除和插入类似。

首先按照普通的BST删除,然后也需要做再平衡。

看一个直观的动画:

删除之后,节点再平衡也有4种情况:

  1. 如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较左节点的平衡因子

    如果左节点的平衡因子>=0,表示是left left的情况,只需要一次右旋即可

    如果左节点的平衡因<0,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋

  2. 如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较右节点的平衡因子

    如果右节点的平衡因子<=0,表示是Right Right的情况,只需要一次左旋即可

    如果右节点的平衡因子>0,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋

相应的代码如下:

Node delete(Node node, int data)
{
//Step 1. 普通BST节点删除
// 如果节点为空,直接返回
if (node == null)
return node; // 如果值小于当前节点,那么继续左节点删除
if (data < node.data)
node.left = delete(node.left, data); //如果值大于当前节点,那么继续右节点删除
else if (data > node.data)
node.right = delete(node.right, data); //如果值相同,那么就是要删除的节点
else
{
// 如果是单边节点的情况
if ((node.left == null) || (node.right == null))
{
Node temp = null;
if (temp == node.left)
temp = node.right;
else
temp = node.left; //没有子节点的情况
if (temp == null)
{
node = null;
}
else // 单边节点的情况
node = temp;
}
else
{ //非单边节点的情况
//拿到右侧节点的最小值
Node temp = minValueNode(node.right);
//将最小值作为当前的节点值
node.data = temp.data;
// 将该值从右侧节点删除
node.right = delete(node.right, temp.data);
}
} // 如果节点为空,直接返回
if (node == null)
return node; // step 2: 更新当前节点的高度
node.height = max(height(node.left), height(node.right)) + 1; // step 3: 获取当前节点的平衡因子
int balance = getBalance(node); // 如果节点不再平衡,那么有4种情况
//1.如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较左节点的平衡因子
//如果左节点的平衡因子>=0,表示是left left的情况,只需要一次右旋即可
//如果左节点的平衡因<0,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
//2.如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较右节点的平衡因子
//如果右节点的平衡因子<=0,表示是Right Right的情况,只需要一次左旋即可
//如果右节点的平衡因子>0,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋
// Left Left Case
if (balance > 1 && getBalance(node.left) >= 0)
return rightRotate(node); // Left Right Case
if (balance > 1 && getBalance(node.left) < 0)
{
node.left = leftRotate(node.left);
return rightRotate(node);
} // Right Right Case
if (balance < -1 && getBalance(node.right) <= 0)
return leftRotate(node); // Right Left Case
if (balance < -1 && getBalance(node.right) > 0)
{
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}

本文的代码地址:

learn-algorithm

本文收录于 http://www.flydean.com/11-algorithm-avl-tree/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

看动画学算法之:平衡二叉搜索树AVL Tree的更多相关文章

  1. 平衡二叉搜索树AVL

    package com.sunshine.AlgorithmTemplate; import com.sunshine.OFFER66_SECOND.BalanceTreeNode; import c ...

  2. 平衡二叉搜索树/AVL二叉树 C实现

    //AVTree.h #ifndef MY_AVLTREE_H #define MY_AVLTREE_H typedef int ElementType; struct TreeNode { Elem ...

  3. 算法:非平衡二叉搜索树(UnBalanced Binary Search Tree)

    背景 很多场景下都需要将元素存储到已排序的集合中.用数组来存储,搜索效率非常高: O(log n),但是插入效率比较低:O(n).用链表来存储,插入效率和搜索效率都比较低:O(n).如何能提供插入和搜 ...

  4. Java与算法之(13) - 二叉搜索树

    查找是指在一批记录中找出满足指定条件的某一记录的过程,例如在数组{ 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 }中查找数字15,实现代码很简单 ...

  5. 二叉搜索树、AVL平衡二叉搜索树、红黑树、多路查找树

    1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要 ...

  6. 手写AVL平衡二叉搜索树

    手写AVL平衡二叉搜索树 二叉搜索树的局限性 先说一下什么是二叉搜索树,二叉树每个节点只有两个节点,二叉搜索树的每个左子节点的值小于其父节点的值,每个右子节点的值大于其左子节点的值.如下图: 二叉搜索 ...

  7. convert sorted list to binary search tree(将有序链表转成平衡二叉搜索树)

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

  8. LeetCode 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树

    第108题 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10 ...

  9. 树-二叉搜索树-AVL树

    树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路 ...

随机推荐

  1. Promise.all()

    语法:Promise.all(iterable); 参数:iterable 一个可迭代对象,如 Array 或 String. 返回值:如果传入的参数是一个空的可迭代对象,则返回一个已完成(alrea ...

  2. ORB_SLAM2 闭环检测段错误

    问题描述: Ubuntu14.04运行正常.Ubuntu 16.04下运行时,检测到闭环后有时会段错误,定位发现断错误出现在CorrectLoop()的红色代码处 void LoopClosing:: ...

  3. PowerDotNet平台化软件架构设计与实现系列(01):基础数据平台

    本系列我将主要通过图片和少许文字讲解通过个人自研的PowerDotNet进行快速开发平台化软件产品. PowerDotNet不仅仅是包含像Newtonsoft.Json.Dapper.Quartz.R ...

  4. pycharm 汉化

    1.首先进入pycharm,点击file,找到setting. 2.点击 plugins 搜索Chinese,找到Chinese(simplified)Language Pack EAP,点击inst ...

  5. 20210803 noip29

    考场 第一次在 hz 考试.害怕会困,但其实还好 看完题感觉不太难,估计有人 AK. T3 比较套路,没办法枚举黑点就从 LCA 处考虑,在一个点变成黑点时计算其他点和它的 LCA 的贡献,暴力跳父亲 ...

  6. P1721 [NOI2016] 国王饮水记 题解

    蒟蒻的第一篇黑题题解,求过. 题目链接 题意描述 这道题用简洁的话来说,就是: 给你 \(n\) 个数字,你可以让取其中任意若干个数字,每次操作,都会使所有取的数字变为取的数字的平均数,并且你最多只能 ...

  7. tslib移植arm及使用

    测试平台 宿主机平台:Ubuntu 12.04.4 LTS 目标机:Easy-ARM IMX283 目标机内核:Linux 2.6.35.3 tslib 1.4 下载  https://gitlab. ...

  8. Appium自动化(8) - 可定位的控件属性

    如果你还想从头学起Appium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1693896.html 前言 在前面几篇文章可以看到,一个 ...

  9. Vue获取Abp VNext Token

    Abp VNext默认没公开访问Token的Api,但有个问题Cookie方式如果是手机或桌面程序不如Token方便 Axios默认是Json方式提交,abp登录需要使用application/x-w ...

  10. Identity角色管理四(删除角色)

    角色删除方法 [HttpPost] [ValidateAntiForgeryToken] public async Task<ActionResult> Delete(string id) ...