简要题解如下:

记 \(1\) 到 \(n\) 的路径为关键路径。

  1. 注意到关键路径只有一条是解题的关键,可以思考这张图长什么样子。

  2. 不难发现关键路径上所有边均为桥,因此大致上是关键路径上每个点下面挂了很多个连通块。

  3. 基于这张图的形态涉及一个 \(dp\),令 \(f_{i, S}\) 表示当前只考虑 \(S\) 这个集合,当前在关键路径上走到的点为 \(i\) 留下的最大边权。

  4. 转移有两种,一种是直接考虑在关键路径上往后扩展一个点 \(j\),令一种方式是考虑在 \(i\) 下面挂上一个连通块 \(T\) 此处可以枚举子集。通过预处理等技巧可以做到 \(\mathcal{O(n ^ 2 2 ^ n + n 3 ^ n)}\)

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 20;
const int M = (1 << 15) + 5;
int n, m, u, v, c, L, all, g[M], w[N][N], f[N][M], dp[N][M];
int main () {
cin >> n >> m, L = (1 << n) - 1;
memset(w, 128, sizeof(w)), memset(dp, 128, sizeof(dp));
rep(i, 1, m) cin >> u >> v >> c, w[u][v] = w[v][u] = c, all += c;
rep(S, 0, L) rep(i, 1, n) rep(j, 1, n) if((1 << (j - 1)) & S) f[i][S] += max(0, w[i][j]);
rep(S, 0, L) {
rep(i, 1, n) rep(j, 1, n) if(((1 << (i - 1)) & S) && ((1 << (j - 1)) & S)) g[S] += max(0, w[i][j]);
g[S] /= 2;
}
dp[1][1] = 0;
rep(S, 0, L) rep(i, 1, n) if(dp[i][S] >= 0) {
rep(j, 1, n)
if(!((1 << (j - 1)) & S) && w[i][j] > 0)
dp[j][S | (1 << (j - 1))] = max(dp[j][S | (1 << (j - 1))], dp[i][S] + w[i][j]);
for (int T = (L ^ S); T; T = ((T - 1) & (L ^ S)))
dp[i][S | T] = max(dp[i][S | T], dp[i][S] + f[i][T] + g[T]);
}
printf("%d", all - dp[n][L]);
return 0;
}

一定要将思路理清,考虑最终状态的时候一定要完全准确,否则可能会出现某些性质没有发现的情况。

AT2657 [ARC078D] Mole and Abandoned Mine的更多相关文章

  1. Mole and Abandoned Mine

    Mole and Abandoned Mine n点m条边的无向图,删除第i条边花费c[i],问1到n只有一条路径时所需要的最小花费? \(2\le n\le 15\) . 我又A掉了一道zzs的题啦 ...

  2. AT2657 Mole and Abandoned Mine

    传送门 好神的状压dp啊 首先考虑一个性质,删掉之后的图一定是个联通图 并且每个点最多只与保留下来的那条路径上的一个点有边相连 然后设状态:\(f[s][t]\)代表当前联通块的点的状态为\(s\)和 ...

  3. 题解-AtCoder ARC-078F Mole and Abandoned Mine

    problem ATC-arc078F 题意概要:给定一个 \(n\) 点 \(m\) 边简单无向图(无自环无重边),边有费用,现切去若干条边,使得从 \(1\) 到 \(n\) 有且仅有一条简单路径 ...

  4. AtCoder arc078_d Mole and Abandoned Mine

    洛谷题目页面传送门 & AtCoder题目页面传送门 给定一个无向连通带权图\(G=(V,E),|V|=n,|E|=m\)(节点从\(0\)开始编号),要删掉一些边使得节点\(0\)到\(n- ...

  5. [atARC078F]Mole and Abandoned Mine

    注意到最终图的样子可以看作一条从1到$n$的路径,以及删去这条路径上的边后,路径上的每一个点所对应的一个连通块 考虑dp,令$f_{S,i}$表示当前1到$n$路径上的最后一个点以及之前点(包括$i$ ...

  6. 【做题】arc078_f-Mole and Abandoned Mine——状压dp

    题意:给出一个\(n\)个结点的联通无向图,每条边都有边权.令删去一条边的费用为这条边的边权.求最小的费用以删去某些边使得结点\(1\)至结点\(n\)有且只有一条路径. \(n \leq 15\) ...

  7. AtCoder Regular Contest 078

    我好菜啊,ARC注定出不了F系列.要是出了说不定就橙了. C - Splitting Pile 题意:把序列分成左右两部分,使得两边和之差最小. #include<cstdio> #inc ...

  8. 【AtCoder】ARC078

    C - Splitting Pile 枚举从哪里开始分的即可 #include <bits/stdc++.h> #define fi first #define se second #de ...

  9. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

随机推荐

  1. 「算法笔记」快速数论变换(NTT)

    一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...

  2. iGPT and ViT

    目录 概 主要内容 iGPT ViT 代码 Chen M., Radford A., Child R., Wu J., Jun H., Dhariwal P., Luan D., Sutskever ...

  3. nginx -g "daemon off;" 你学废了吗?

    去年的时候写了一篇原创<前后端分离,如何在前端项目中动态插入后端API基地址?(in docker)>, 我自认为这篇生产实践是对大前端. 容器化.CI/CD的得意之作. 对于前后端分离的 ...

  4. LT7211替代芯片|低BOM成本替代LT7211 EDP转LVDS转换设计芯片CS5211

    LT7211B是一种用于虚拟现实/显示应用的TYPE-C/DP1.2转LVDS转换芯片.LT7211B 对于DP1.2输入,LT7211B可以配置为1.2.4车道,还支持车道交换功能.自适应均衡使其适 ...

  5. Java初学者作业——使用switch结构实现一个简单的购物计划

    返回本章节 返回作业目录 需求说明: 使用switch结构实现一个购物计划,计划为:星期一.星期三.星期五购买伊利牛奶和面包,星期二.星期四购买苹果和香蕉,星期六.星期日购买啤酒和周黑鸭. 实现思路: ...

  6. 【MySQL作业】连接查询——美和易思内连接查询应用习题

    点击打开所使用到的数据库>>> 1.使用内连接获取客户"王传华"所有的订单信息和客户信息. 使用内连接获取客户"王传华"所有的订单信息和客户信 ...

  7. SpringCloud创建Config多客户端公共配置

    1.说明 基于已经创建好的Spring Cloud配置中心, 在配置中心仅保存一套配置文件, 多个客户端可以通过配置中心读取到相同的配置, 而不需要在每个客户端重复配置一遍, 下面以一个Config ...

  8. MYSQL架构理解

    目录 一.MYSQL架构 1. 架构图 2.分层实现 3.查询组件 二.并发控制 三. 事务 四.引擎 摘自 通过对MYSQL重要的几个属性的理解,建立一个基本的MYSQL的知识框架 一.MYSQL架 ...

  9. spring security +MySQL + BCryptPasswordEncoder 单向加密验证 + 权限拦截 --- 心得

    1.前言 前面学习了 security的登录与登出 , 但是用户信息 是 application 配置 或内存直接注入进去的 ,不具有实用性,实际上的使用还需要权限管理,有些 访问接口需要某些权限才可 ...

  10. Word2010邮件合并制作成绩单

    原文链接: https://www.toutiao.com/i6488941003494392333/ 准备数据源: 选择"邮件"选项卡,"开始邮件合并"功能组 ...