DH算法图解+数学证明
前几天和同事讨论IKE密钥交换流程时,提到了Diffie-Hellman交换。DH算法最主要的作用便是在不安全的网络上成功公共密钥(并未传输真实密钥)。但由于对于DH算法的数学原理则不清楚,因此私下对DH算法进行一个简单学习。
1. DH算法的交互流程:

- Alice和Bob都有一个只有自己知道的私钥,在特定规则(g, a, p)下生成自己的公钥A;
- Alice将自己的公钥A,连同g, p共同发给Bob
- Bob在收到Alice发送来的公钥A, g, p后,先使用相同的规则((g, a, p))生成自己的公钥B;在使用Alice的公钥A计算生成共享密钥K
- Bob将自己的公钥B发送给Alice即可。(Alice已经有g, p, 因此无需在发送)
- Alice在接收到Bob的公钥B后,使用相同的规则计算成功共享密钥K
至此,Alice 和 Bob便同时拥有了共享密钥K。此时由于各自的私钥a,b未在互联网上传播,因此即使存在窥探者Eve,他仅通过公开的A\B\g\p在短时间内无法破解出a,b,K。因此DH算法便可以在不安全的网络上协商出密钥,基于此构建安全的加密通道。
2. 疑问:Alice和Bob最后计算的K值一样吗?
对于DH整个交互流程来说,比较简单,基本都可以理解。但是忽然说最后的K值相等,这多少有点突然和难以置信,让人有点猝不及防。
书本上都是这样解释的:

所以Alice和Bob的共享密钥K是相同的。但是,总感觉没有get到要领和精髓。因为我不知道mod(求余)的运算规则,不知道如下等式是否成立???

因此半夜凌晨1点从刚暖热乎的被窝又爬了出来,想要证明下他们给的公式是否正确( 其实当成定理记住也就OK了,不过我嘛,还是爬起来了)。证明这个公式也很简单:将求余运算转换为加减乘除运算,然后利用二项式展开公式便可以得到答案。
至于为什么要将求余运算转换为加减乘除四则运算,原因是我不知道求余算法的规则,不然我也不需要多此一举了。
证明开始:
令:


则:
根据①②式可得:




将③带入上式可得:

使用二项式展开公式将 −∗ 展开,则有


从这个表达式可以看出,前a项(i∈[0,−1])每一项都是p的整数倍,因此求余运算时必定为0,因此:



这下好了,高兴的睡不着觉了。
DH算法图解+数学证明的更多相关文章
- SSL握手两大加密算法 : RAS算法 和 DH算法解析
写下此博客记录心得体会,如有不足之处请指正 先是手稿笔记 : 正文: 在Https协议中,Client端和Server端需要三个参数才能生成SessionKey来加密信息. 三个参数分别是 ...
- openswan中DH算法说明
Author : Email : vip_13031075266@163.com Date : 2021.01.11 Copyright : 未经同意不得 ...
- 信息加密之非对称加密DH算法
非对称加密算法是相对于对称加密算法来说的,对于对称加密算法请查阅之前的总结,今天为大家介绍一下DH算法,DH是一种密钥交换算法,接收方根据发送方加密时的密钥,生成接收方解密密钥.下面就一起来学习一下吧 ...
- <算法图解>读书笔记:第1章 算法简介
阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(l ...
- [转]PLA算法总结及其证明
PLA算法总结及其证明 http://m.blog.csdn.net/article/details?id=45232891 分类: 机器学习 PLA(Perception Learning Algo ...
- Lengauer-Tarjan算法的相关证明
Lengauer-Tarjan算法的相关证明 0. 约定 为简单起见,下文中的路径均指简单路径(事实上非简单路径不会对结论造成影响). \(V\)代表图的点集,\(E\)代表图的边集,\(T\)代表图 ...
- 任何国家都无法限制数字货币。为什么呢? 要想明白这个问题需要具备一点区块链的基础知识: 区块链使用的大致技术包括以下几种: a.点对点网络设计 b.加密技术应用 c.分布式算法的实现 d.数据存储技术 e.拜占庭算法 f.权益证明POW,POS,DPOS 原因一: 点对点网络设计 其中点对点的P2P网络是bittorent ,由于是点对点的网络,没有中心化,因此在全球分布式的网
任何国家都无法限制数字货币.为什么呢? 要想明白这个问题需要具备一点区块链的基础知识: 区块链使用的大致技术包括以下几种: a.点对点网络设计 b.加密技术应用 c.分布式算法的实现 d.数据存储技 ...
- 算法图解...pdf
电子书资源:算法图解 书籍简介 本书示例丰富,图文并茂,以让人容易理解的方式阐释了算法,旨在帮助程序员在日常项目中更好地发挥算法的能量.书中的前三章将帮助你打下基础,带你学习二分查找.大O表示法. ...
- 一个关于AdaBoost算法的简单证明
下载本文PDF格式(Academia.edu) 本文给出了机器学习中AdaBoost算法的一个简单初等证明,需要使用的数学工具为微积分-1. Adaboost is a powerful algori ...
随机推荐
- kivy八种布局方式学习
kivy八种布局:FloatLayout.BoxLayout.AnchorLayout.GridLayout.PageLayout.RelativeLayout.ScatterLayout.Stack ...
- CTF中的序列化与反序列化
记一些CTF出现的序列化与反序列化的知识点和题目. 序列化和反序列化的概念 序列化就是将对象转换成字符串.字符串包括 属性名 属性值 属性类型和该对象对应的类名. 反序列化则相反将字符串重新恢复成对象 ...
- SpringBoot | 4.1 SpringMVC的自动配置
目录 前言 1. SpringMVC框架的设计与流程 1.1 SpringMVC框架的示意图 1.2 SpringMVC的组件流程 2. *自动配置的源码分析 2.1 导入Web场景启动器 2.2 找 ...
- Pikachu-File Inclusion模块
一.概述 文件包含,是一个功能.在各种开发语言中都提供了内置的文件包含函数,其可以使开发人员在一个代码文件中直接包含(引入)另外一个代码文件. 比如 在PHP中,提供了:include(),inclu ...
- Pikachu-RCE模块
一.概述 1.1 RCE漏洞 可以让攻击者直接向后台服务器远程注入操作系统命令或者代码,从而控制后台系统. 1.2 远程系统命令执行一般出现这种漏洞,是因为应用系统从设计上需要给用户提供指定的远程命令 ...
- Linux学习手册
入门概述 Linux 简介 Linux 内核最初只是由芬兰人林纳斯·托瓦兹(Linus Torvalds)在赫尔辛基大学上学时出于个人爱好而编写的. Linux 是一套免费使用和自由传播的类 Unix ...
- Python小白的数学建模课-18.最小生成树问题
最小生成树(MST)是图论中的基本问题,具有广泛的实际应用,在数学建模中也经常出现. 路线设计.道路规划.官网布局.公交路线.网络设计,都可以转化为最小生成树问题,如要求总线路长度最短.材料最少.成本 ...
- kubebuilder实战之一:准备工作kubebuilder实战之一:准备工作
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- NOIP 模拟 $32\; \rm Smooth$
题解 \(by\;zj\varphi\) 很简单的贪心题. 开 \(B\) 个队列,每个队列存最后一次乘上的数为当前队列编号的数. 每次去所有队列中队首的最小值,不用开堆,因为开堆用于将所有数排序,但 ...
- 【Tools】SSHUsage
SSH(Secure Shell 的缩写)是一种网络协议,用于加密两台计算机之间的通信,并且支持各种身份验证机制.还能对操作者进行认证(authentication)和授权(authorization ...