介绍 Seq2Seq 模型
2019-09-10 19:29:26
问题描述:什么是Seq2Seq模型?Seq2Seq模型在解码时有哪些常用办法?
问题求解:
Seq2Seq模型是将一个序列信号,通过编码解码生成一个新的序列信号,通常用于机器翻译、语音识别、自动对话等任务。在Seq2Seq模型提出之前,深度学习网络在图像分类等问题上取得了非常好的效果。在深度学习擅长的问题中,输入和输出通常都可以表示成固定长度的向量,如果长度稍微有了一点变化,会使用补零的操作。然而像前面提到的几个问题,其序列长度事先并不知道。因此如何突破先前深度神经网络的局限,使其适应于更多的场景,成了2013年以来的研究热点,Seq2Seq模型也就应运而生。
Seq2Seq模型的核心思想是,通过深度神经网络将一个作为输入的序列映射为一个作为输出的序列,这个过程由编码输入和解码输出两个环节构成。
Seq2Seq在解码的时候最基础的算法是贪心法,即每次贪心的选择概率最大的结果。贪心算法的计算代价低,适合作为基准结果与其他方法比较。
集束搜索是一个常见的改进算法,它是一种启发式的算法。beam search每次维护beam_size个解,然后由这beam_size个解生成下一层的结果,之后将下一层取前beam_size个,不断迭代得到最后的结果。
介绍 Seq2Seq 模型的更多相关文章
- 深度学习之seq2seq模型以及Attention机制
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2se ...
- [转] 图解Seq2Seq模型、RNN结构、Encoder-Decoder模型 到 Attention
from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一.Seq2Seq 模型 1. 简介 Sequence-to ...
- 从Encoder到Decoder实现Seq2Seq模型
https://zhuanlan.zhihu.com/p/27608348 更新:感谢@Gang He指出的代码错误.get_batches函数中第15行与第19行,代码已经重新修改,GitHub已更 ...
- 时间序列深度学习:seq2seq 模型预测太阳黑子
目录 时间序列深度学习:seq2seq 模型预测太阳黑子 学习路线 商业中的时间序列深度学习 商业中应用时间序列深度学习 深度学习时间序列预测:使用 keras 预测太阳黑子 递归神经网络 设置.预处 ...
- 深度学习的seq2seq模型——本质是LSTM,训练过程是使得所有样本的p(y1,...,yT‘|x1,...,xT)概率之和最大
from:https://baijiahao.baidu.com/s?id=1584177164196579663&wfr=spider&for=pc seq2seq模型是以编码(En ...
- seq2seq模型详解及对比(CNN,RNN,Transformer)
一,概述 在自然语言生成的任务中,大部分是基于seq2seq模型实现的(除此之外,还有语言模型,GAN等也能做文本生成),例如生成式对话,机器翻译,文本摘要等等,seq2seq模型是由encoder, ...
- Seq2Seq模型 与 Attention 策略
Seq2Seq模型 传统的机器翻译的方法往往是基于单词与短语的统计,以及复杂的语法结构来完成的.基于序列的方式,可以看成两步,分别是 Encoder 与 Decoder,Encoder 阶段就是将输入 ...
- 吴裕雄--天生自然 pythonTensorFlow自然语言处理:Seq2Seq模型--训练
import tensorflow as tf # 1.参数设置. # 假设输入数据已经用9.2.1小节中的方法转换成了单词编号的格式. SRC_TRAIN_DATA = "F:\\Tens ...
- L11注意力机制和Seq2seq模型
注意力机制 在"编码器-解码器(seq2seq)"⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息.当编码器为循环神经⽹络时,背景变量 ...
随机推荐
- GCD实现多个定时器,完美避过NSTimer的三大缺陷(RunLoop、Thread、Leaks)
定时器在我们每个人做的iOS项目里面必不可少,如登录页面倒计时.支付期限倒计时等等,一般来说使用NSTimer创建定时器: + (NSTimer *)timerWithTimeInterval:(NS ...
- Html的label和span的区别
从最终效果来看,label与span标签显示方式及作用都一样的但由于label中有for属性的存在,也有着决定性的不同 for属性将label和表单进行配对 label标签通常是写在表单(form)内 ...
- Visual studio2019配置OPENCV 时属性管理器中没有Microsoft.Cpp.x64.user的解决办法
方法一:重新下载Visual studio2017,再次打开2019就会出现Microsoft.Cpp.x64.user,感觉有些麻烦,也占电脑空间,推荐方法二. 方法二:与方法一原理相同,下载201 ...
- 如何正确使用redis分布式锁
前言 笔者在公司担任技术面试官,在笔者面试过程中,如果面试候选人提到了reids分布式锁,笔者都会问一下redis分布式锁的知识点,但是令笔者遗憾的是,该知识点十个人中有九个人都答得不清楚,或者回 ...
- 华为的Java面试题,仅供参考。
IP地址的编码分为哪俩部分? IP地址由两部分组成,网络号和主机号.不过是要和“子网掩码”按位与上之后才能区分哪些是网络位哪些是主机位. 2.用户输入M,N值,从1至N开始顺序循环数数,每数到M输出该 ...
- mysql插入数据报错一二
上周selenium+phantomjs+python3简单爬取一个网站,往数据库写数据遇到以下两个问题,记录一下: 报错一:Data truncated for column 'update_tim ...
- 使用纯粹的JS构建 Web Component
原文链接:https://ayushgp.github.io/htm...译者:阿里云 - 也树 Web Component 出现有一阵子了. Google 费了很大力气去推动它更广泛的应用,但是除 ...
- vuex源码阅读分析
这几天忙啊,有绝地求生要上分,英雄联盟新赛季需要上分,就懒着什么也没写,很惭愧.这个vuex,vue-router,vue的源码我半个月前就看的差不多了,但是懒,哈哈.下面是vuex的源码分析在分析源 ...
- 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例)
数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系 ...
- 【Python challenge】通关代码及攻略(0-11)
前言: 最近找到一个有关python的游戏闯关,这是游戏中的思考及通关攻略 最开始位于:http://www.pythonchallenge.com/pc/def/0.html 第0关 题目分析 提示 ...