前言

  红胖子,来也!
  识别目标,可以通过图形拟合,将目标提取出来。

 

Demo

  
  
  
  
   
  

 

寻找轮廓

 

寻找轮廓凸包

 

对轮廓凸包进行多图形拟合

概述

  寻找轮廓之后,openCV提供了对输入点集合进行多种图形进行拟合的方法,基本都是输入之前寻找凸包后再进行操作,当然也可以直接对了轮廓进行操作。
  识别不同的目标物体,根据形状可以剔除,还可以做很多其他的操作,比如车牌识别,提取车牌号码,那么直接可以拿到每个车牌字符的矩形,直接对矩形进行roi,然后在进行下一步的识别操作(补充:这部分可以拿到坐标后,自己写算法也是一样,看个人习惯)。

返回包围的矩形函数原型

  (返回的是水平的矩形)

Rect boundingRect( InputArray points );
  • 参数一:InputArray类型的points,二维点(轮廓顶点)的轮廓输入向量,存储在std::vector或Mat中;

返回包围的最小面积矩形函数原型

(最小面积则其返回的矩形基本都是旋转的,注意返回的类型)

RotatedRect minAreaRect( InputArray points );
  • 参数一:InputArray类型的points,二维点(轮廓顶点)的轮廓输入向量,存储在std::vector或Mat中;

返回包围的圆形函数原型

void minEnclosingCircle( InputArray points,
Point2f& center,
float& radius );
  • 参数一:InputArray类型的points,二维点(轮廓顶点)的轮廓输入向量,存储在std::vector或Mat中;
  • 参数二:Point2f类型的center,返回圆形的中心点;
  • 参数三:float类型的radius,返回圆形的半径;

返回包围的最小椭圆函数原型

  (注意:至少需要输入6个点)

RotatedRect fitEllipse( InputArray points );
  • 参数一:InputArray类型的points,二维点(轮廓顶点)的轮廓输入向量,存储在std::vector或Mat中(至少要6个点);
      返回提取四个点的代码:
cv::RotatedRect rotateRect = cv::minAreaRect(hullPoints);
cv::Point2f vertex[4];
rotateRect.points(vertex);

返回包围的多边形拟合函数原型

void approxPolyDP( InputArray curve,
OutputArray approxCurve,
double epsilon,
bool closed );
  • 参数一:InputArray类型的curve,二维点(轮廓顶点)的轮廓输入向量,存储在std::vector或Mat中;
  • 参数二:OutputArray类型的approxCurve;输出多边形结果std::vector<cv::Point2f>;
  • 参数三:double类型的epsilon,指定近似精度。这是最大距离;
  • 参数四:bool类型的closed,如果为真,则近似曲线是闭合的(其第一个顶点和最后一个顶点是已连接)。否则,它不会关闭。

返回包围的最小三角形函数原型

double minEnclosingTriangle( InputArray points, OutputArray triangle );
  • 参数一:InputArray类型的points,二维点(轮廓顶点)的轮廓输入向量,存储在std::vector或Mat中;
  • 参数二:OutputArray类型triangle,返回三角形;
 

Demo源码

void OpenCVManager::testFitting()
{
QString fileName1 =
"E:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/10.jpg";
cv::Mat srcMat = cv::imread(fileName1.toStdString());
cv::Mat dstMat;
int width = 400;
int height = 300; cv::resize(srcMat, srcMat, cv::Size(width, height)); cv::String windowName = _windowTitle.toStdString();
cvui::init(windowName); cv::Mat windowMat = cv::Mat(cv::Size(srcMat.cols * 3,
srcMat.rows * 4),
srcMat.type());
int sigmaS = 100;
int sigmaR = 1.0; int thresh = 232;
int maxval = 255; while(true)
{
// 刷新全图黑色
windowMat = cv::Scalar(0, 0, 0); // 原图复制
cv::Mat mat = windowMat(cv::Range(srcMat.rows * 0, srcMat.rows * 1),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::addWeighted(mat, 0.0f, srcMat, 1.0f, 0.0f, mat); cv::Mat tempMat;
{
{
cvui::printf(windowMat, 75 + width * 1, 40 + height * 0, "sigmaS");
cvui::trackbar(windowMat, 75 + width * 1, 50 + height * 0, 165, &sigmaS, 101, 10000);
cvui::printf(windowMat, 75 + width * 1, 90 + height * 0, "sigmaR");
cvui::trackbar(windowMat, 75 + width * 1, 100, 165 + height * 0, &sigmaR, 1, 100); // 使用自适应流形应用高维滤波。
cv::Ptr<cv::ximgproc::AdaptiveManifoldFilter> pAdaptiveManifoldFilter
= cv::ximgproc::createAMFilter(sigmaS/100.0f, sigmaR/100.0f, true);
pAdaptiveManifoldFilter->filter(srcMat, tempMat);
// 效果图copy
mat = windowMat(cv::Range(srcMat.rows * 1, srcMat.rows * 2),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::addWeighted(mat, 0.0f, tempMat, 1.0f, 0.0f, mat);
} // 转为灰度图像
cv::cvtColor(tempMat, tempMat, cv::COLOR_BGR2GRAY); // 车牌时,对灰度图取反操作
// tempMat = ~tempMat; {
// 调整阈值化的参数thresh
cvui::printf(windowMat, 75 + width * 1, 20 + height * 1, "thresh");
cvui::trackbar(windowMat, 75 + width * 1, 40 + height * 1, 165, &thresh, 0, 255);
// 调整阈值化的参数maxval
cvui::printf(windowMat, 75 + width * 1, 80 + height * 1, "maxval");
cvui::trackbar(windowMat, 75 + width * 1, 100 + height * 1, 165, &maxval, 0, 255); // 阈值化,注意:此处使用了THRESH_BINARY_INV,白色是255,255,255所以反转阈值化
cv::threshold(tempMat, tempMat, thresh, maxval, cv::THRESH_BINARY_INV);
// 效果图copy
mat = windowMat(cv::Range(srcMat.rows * 0, srcMat.rows * 1),
cv::Range(srcMat.cols * 2, srcMat.cols * 3)); // 转换图像
cv::Mat grayMat;
cv::cvtColor(tempMat, grayMat, cv::COLOR_GRAY2BGR);
cv::addWeighted(mat, 0.0f, grayMat, 1.0f, 0.0f, mat);
} // 寻找轮廓
{
std::vector<std::vector<cv::Point>> contours;
std::vector<cv::Vec4i> hierarchy;
// 查找轮廓:RETR_EXTERNAL-最外层轮廓
cv::findContours(tempMat, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);
// 遍历所有顶层轮廓,并绘制出来
dstMat = srcMat.clone();
cv::Mat emptyMat = srcMat.clone();
emptyMat = cv::Scalar(0,0,0); // 拟合矩形框
cv::Mat fittingRectMat = srcMat.clone();
cv::Mat fittingMinAreaRectMat = srcMat.clone();
cv::Mat fittingMinAreaCircleMat = srcMat.clone();
cv::Mat fittingEllipseMat = srcMat.clone();
cv::Mat fittingPolyMat = srcMat.clone(); // 轮廓contours[i]对应4个hierarchy元素hierarchy[i][0]~ hierarchy[i][3],
// hierarchy[i][0]表示后一个轮廓的索引编号
// hierarchy[i][1]前一个轮廓的索引编号
// hierarchy[i][2]父轮廓的索引编号
// hierarchy[i][3]内嵌轮廓的索引编号
for(int index = 0; index >=0; index = hierarchy[index][0])
{ if(hierarchy.size() <= 0)
{
break;
}
cv::Scalar color;
if(index < hierarchy.size() / 3)
{
color = cv::Scalar(250 / (hierarchy.size() / 3) * index, 125, 255);
}else if(index < hierarchy.size() / 3 * 2)
{
color = cv::Scalar(255, 250 / (hierarchy.size() / 3) * (index - hierarchy.size() / 3), 125);
}else
{
color = cv::Scalar(125, 255, 250 / (hierarchy.size() / 3 == 0 ? 1 :
hierarchy.size() / 3) * (index - hierarchy.size() / 3 * 2));
}
// 绘制轮廓里面的第几个
cv::drawContours(emptyMat, contours, index, color, CV_FILLED, 8, hierarchy); // 寻找最大凸包
std::vector<cv::Point> hullPoints;
std::vector<int> hullIndex;
cv::convexHull(contours[index], hullPoints, false, true);
cv::convexHull(contours[index], hullIndex, false, false);
// 绘制凸包包围线
for(int index2 = 1; index2 < hullPoints.size(); index2++)
{
cv::line(mat, hullPoints.at(index2 - 1), hullPoints.at(index2), cv::Scalar(0, 0, 0), 2);
cv::line(dstMat, hullPoints.at(index2 - 1), hullPoints.at(index2), cv::Scalar(0, 0, 0), 2);
}
qDebug() << __FILE__ << __LINE__ << "index =" << index << "total =" << hierarchy.size(); // 使用形状拟合
// 使用外部包围矩形
{
cv::Rect rect = cv::boundingRect(hullPoints);
cv::rectangle(fittingRectMat, rect, cv::Scalar(0, 255, 0), 2);
}
// 使用外部最小包围矩形
{
cv::RotatedRect rotateRect = cv::minAreaRect(hullPoints);
cv::Point2f vertex[4];
rotateRect.points(vertex);
for(int index = 0; index < 4; index++)
{
cv::line(fittingMinAreaRectMat, vertex[index % 4], vertex[(index + 1) % 4], cv::Scalar(255, 0, 0), 2);
}
}
// 使用外部包围圆形(圆形就是最小了,不存在形变)
{
cv::Point2f center;
float radius;
cv::minEnclosingCircle(hullPoints, center, radius);
cv::circle(fittingMinAreaCircleMat, center, radius, cv::Scalar(0, 0, 0), 2);
}
// 使用外部椭圆拟合:至少要6个点
{
qDebug() << __FILE__ << __LINE__ << hullPoints.size();
if(hullPoints.size() >= 6)
{
cv::RotatedRect rotateRect = cv::fitEllipse(hullPoints);
cv::ellipse(fittingEllipseMat, rotateRect, cv::Scalar(0, 0, 0), 2);
}
}
// 使用多边形拟合
{
std::vector<cv::Point> polyPoints;
cv::approxPolyDP(hullPoints, polyPoints, 3, true);
std::vector<std::vector<cv::Point>> contour;
contour.push_back(polyPoints);
cv::drawContours(fittingPolyMat, contour, 0, cv::Scalar(0, 0, 0), 2);
}
} // 效果图copy:轮廓图
mat = windowMat(cv::Range(srcMat.rows * 1, srcMat.rows * 2),
cv::Range(srcMat.cols * 2, srcMat.cols * 3));
cv::addWeighted(mat, 0.0f, emptyMat, 1.0f, 0.0f, mat);
// 效果图copy:对已知轮廓进行最大凸包检测
mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::addWeighted(mat, 0.0f, dstMat, 1.0f, 0.0f, mat);
// 效果图copy:黑色图拟合矩形
mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
cv::Range(srcMat.cols * 1, srcMat.cols * 2));
cv::addWeighted(mat, 0.0f, fittingRectMat, 1.0f, 0.0f, mat);
// 效果图copy:原图拟合矩形
mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
cv::Range(srcMat.cols * 1, srcMat.cols * 2));
cv::addWeighted(mat, 0.0f, fittingRectMat, 1.0f, 0.0f, mat);
// 效果图copy:原图拟合最小矩形
mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
cv::Range(srcMat.cols * 2, srcMat.cols * 3));
cv::addWeighted(mat, 0.0f, fittingMinAreaRectMat, 1.0f, 0.0f, mat); // 效果图copy:原图拟合最小圆形
mat = windowMat(cv::Range(srcMat.rows * 3, srcMat.rows * 4),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::addWeighted(mat, 0.0f, fittingMinAreaCircleMat, 1.0f, 0.0f, mat); // 效果图copy:原图拟合最小椭圆
mat = windowMat(cv::Range(srcMat.rows * 3, srcMat.rows * 4),
cv::Range(srcMat.cols * 1, srcMat.cols * 2));
cv::addWeighted(mat, 0.0f, fittingEllipseMat, 1.0f, 0.0f, mat); // 效果图copy:原图拟合多边形
mat = windowMat(cv::Range(srcMat.rows * 3, srcMat.rows * 4),
cv::Range(srcMat.cols * 2, srcMat.cols * 3));
cv::addWeighted(mat, 0.0f, fittingPolyMat, 1.0f, 0.0f, mat);
}
} // 更新
cvui::update();
// 显示
cv::imshow(windowName, windowMat);
// esc键退出
if(cv::waitKey(25) == 27)
{
break;
}
}
}
 

工程模板:对应版本号v1.50.0

OpenCV开发笔记(五十六):红胖子8分钟带你深入了解多种图形拟合逼近轮廓(图文并茂+浅显易懂+程序源码)的更多相关文章

  1. OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  2. OpenCV开发笔记(六十五):红胖子8分钟带你深入了解ORB特征点(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  3. OpenCV开发笔记(六十四):红胖子8分钟带你深入了解SURF特征点(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  4. OpenCV开发笔记(五十五):红胖子8分钟带你深入了解Haar、LBP特征以及级联分类器识别过程(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  5. OpenCV开发笔记(七十一):红胖子8分钟带你深入级联分类器训练

    前言   红胖子,来也!  做图像处理,经常头痛的是明明分离出来了(非颜色的),分为几块区域,那怎么知道这几块区域到底哪一块是我们需要的,那么这部分就涉及到需要识别了.  识别可以自己写模板匹配.特征 ...

  6. OpenCV开发笔记(七十二):红胖子8分钟带你使用opencv+dnn+tensorFlow识别物体

    前言   级联分类器的效果并不是很好,准确度相对深度学习较低,本章使用opencv通过tensorflow深度学习,检测已有模型的分类.   Demo       可以猜测,1其实是人,18序号类是狗 ...

  7. OpenCV开发笔记(七十三):红胖子8分钟带你使用opencv+dnn+yolov3识别物体

      前言   级联分类器的效果并不是很好,准确度相对深度学习较低,上一章节使用了dnn中的tensorflow,本章使用yolov3模型,识别出具体的分类.   Demo   320x320,置信度0 ...

  8. .net开发笔记(十六) 对前部分文章的一些补充和总结

    补充有两个: 一个是系列(五)中讲到的事件编程(网址链接),该文提及到了事件编程的几种方式以及容易引起的一些异常,本文补充“多线程事件编程”这一块. 第二个是前三篇博客中提及到的“泵”结构在编程中的应 ...

  9. 论文阅读笔记五十六:(ExtremeNet)Bottom-up Object Detection by Grouping Extreme and Center Points(CVPR2019)

    论文原址:https://arxiv.org/abs/1901.08043 github: https://github.com/xingyizhou/ExtremeNet 摘要 本文利用一个关键点检 ...

随机推荐

  1. python-Django与Nginx整合gunicorn模块

    1.pip install gunicorn 2.修改Nginx配置文件 vim /etc/nginx/conf.d/virtual.conf server { listen ; #listen so ...

  2. C# 基础知识系列- 13 常见类库介绍(二)日期时间类

    0. 前言 上一篇内容介绍了Console类和Math类,这篇内容着重介绍一下C#中时间日期的处理方式. 上一篇勘误: 上一篇中关于静态类没有构造函数,这一表述有误.正确的说法是C#中静态类不包含常规 ...

  3. 大数据并行计算框架Spark

    Spark2.1. http://dblab.xmu.edu.cn/blog/1689-2/ 0+入门:Spark的安装和使用(Python版) Spark2.1.0+入门:第一个Spark应用程序: ...

  4. c++动态数组的使用

    在c++中,有的时候会遇到变长的数组(不管是一维的还是二维的),这个时候就需要用到动态数组了,并且要用new和delete两个操作符,这俩操作符一般成对使用. 先说一维的动态数组吧,直接上代码 #in ...

  5. GitHub 如何忽略文件或者文件夹

    在我们开发项目的时候,往往会产生一些不必要的文件,我们会选择忽略他们,不提交到版本控制中,那我们该如何做呢? 步骤一:在项目根目录下,右键,git bash,在弹出的命令行输入框中输入命令:touch ...

  6. PHP open_basedir配置未包含upload_tmp_dir 导致服务器不能上传文件

    在做一个上传图片的功能时候发现后台接收到的$_FILES['file']['error'] = 6,这个错误意思是找不到临时文件,或者是临时文件夹无权限,需要更改php.ini文件的 upload_t ...

  7. weblogic补丁升级详细步骤,18.7.17补丁更新

    weblogic打补丁 到weblogic官网下载补丁包 对应的补丁包  如: p22248372_1036012_Generic.zip 一  安装补丁步骤 1.登录linux的weblogic用户 ...

  8. Eureka重点原理解析

    前言 带着问题学习,事半功倍.本文将对如下几个问题进行总结说明: 1.EurekaServer端服务注册的流程和设计模式 2.Eureka服务续约的bug 3.EurekaClient的启动流程 4. ...

  9. 用两张图告诉你,为什么你的App会卡顿?

    有什么料? 从这篇文章中你能获得这些料: 知道setContentView()之后发生了什么? 知道Android究竟是如何在屏幕上显示我们期望的画面的? 对Android的视图架构有整体把握. 学会 ...

  10. Linux 下如何产生core文件(core dump设置)

    转自:https://blog.csdn.net/star_xiong/article/details/43529637 今天在Linux下调试C程序时,出现段错误,习惯性的ls下当前目录,发现没有生 ...