airfoil4755 下载

链接:https://pan.baidu.com/s/1YEtNjJ0_G9eeH6A6vHXhnA

提取码:dwjq

梯度下降

Boyd & Vandenberghe, 2004

%matplotlib inline
import numpy as np
import torch
import time
from torch import nn, optim
import math
import sys
sys.path.append('/home/kesci/input')
import d2lzh1981 as d2l

一维梯度下降

证明:沿梯度反方向移动自变量可以减小函数值

泰勒展开:

f(x+ϵ)=f(x)+ϵf′(x)+O(ϵ2)
f(x+\epsilon)=f(x)+\epsilon f^{\prime}(x)+\mathcal{O}\left(\epsilon^{2}\right)
f(x+ϵ)=f(x)+ϵf′(x)+O(ϵ2)

代入沿梯度方向的移动量 ηf′(x)\eta f^{\prime}(x)ηf′(x):

f(x−ηf′(x))=f(x)−ηf′2(x)+O(η2f′2(x))
f\left(x-\eta f^{\prime}(x)\right)=f(x)-\eta f^{\prime 2}(x)+\mathcal{O}\left(\eta^{2} f^{\prime 2}(x)\right)
f(x−ηf′(x))=f(x)−ηf′2(x)+O(η2f′2(x))

f(x−ηf′(x))≲f(x)
f\left(x-\eta f^{\prime}(x)\right) \lesssim f(x)
f(x−ηf′(x))≲f(x)

x←x−ηf′(x)
x \leftarrow x-\eta f^{\prime}(x)
x←x−ηf′(x)

e.g.

f(x)=x2
f(x) = x^2
f(x)=x2

def f(x):
return x**2 # Objective function def gradf(x):
return 2 * x # Its derivative def gd(eta):
x = 10
results = [x]
for i in range(10):
x -= eta * gradf(x)
results.append(x)
print('epoch 10, x:', x)
return results res = gd(0.2)
epoch 10, x: 0.06046617599999997
def show_trace(res):
n = max(abs(min(res)), abs(max(res)))
f_line = np.arange(-n, n, 0.01)
d2l.set_figsize((3.5, 2.5))
d2l.plt.plot(f_line, [f(x) for x in f_line],'-')
d2l.plt.plot(res, [f(x) for x in res],'-o')
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)') show_trace(res)

学习率

show_trace(gd(0.05))
epoch 10, x: 3.4867844009999995

show_trace(gd(1.1))
epoch 10, x: 61.917364224000096

局部极小值

e.g.

f(x)=xcos⁡cx
f(x) = x\cos cx
f(x)=xcoscx

c = 0.15 * np.pi

def f(x):
return x * np.cos(c * x) def gradf(x):
return np.cos(c * x) - c * x * np.sin(c * x) show_trace(gd(2))
epoch 10, x: -1.528165927635083

多维梯度下降

∇f(x)=[∂f(x)∂x1,∂f(x)∂x2,…,∂f(x)∂xd]⊤
\nabla f(\mathbf{x})=\left[\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \frac{\partial f(\mathbf{x})}{\partial x_{2}}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_{d}}\right]^{\top}
∇f(x)=[∂x1​∂f(x)​,∂x2​∂f(x)​,…,∂xd​∂f(x)​]⊤

f(x+ϵ)=f(x)+ϵ⊤∇f(x)+O(∥ϵ∥2)
f(\mathbf{x}+\epsilon)=f(\mathbf{x})+\epsilon^{\top} \nabla f(\mathbf{x})+\mathcal{O}\left(\|\epsilon\|^{2}\right)
f(x+ϵ)=f(x)+ϵ⊤∇f(x)+O(∥ϵ∥2)

x←x−η∇f(x)
\mathbf{x} \leftarrow \mathbf{x}-\eta \nabla f(\mathbf{x})
x←x−η∇f(x)

def train_2d(trainer, steps=20):
x1, x2 = -5, -2
results = [(x1, x2)]
for i in range(steps):
x1, x2 = trainer(x1, x2)
results.append((x1, x2))
print('epoch %d, x1 %f, x2 %f' % (i + 1, x1, x2))
return results def show_trace_2d(f, results):
d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e')
x1, x2 = np.meshgrid(np.arange(-5.5, 1.0, 0.1), np.arange(-3.0, 1.0, 0.1))
d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4')
d2l.plt.xlabel('x1')
d2l.plt.ylabel('x2')

f(x)=x12+2x22
f(x) = x_1^2 + 2x_2^2
f(x)=x12​+2x22​

eta = 0.1

def f_2d(x1, x2):  # 目标函数
return x1 ** 2 + 2 * x2 ** 2 def gd_2d(x1, x2):
return (x1 - eta * 2 * x1, x2 - eta * 4 * x2) show_trace_2d(f_2d, train_2d(gd_2d))
epoch 20, x1 -0.057646, x2 -0.000073

自适应方法

牛顿法

在 x+ϵx + \epsilonx+ϵ 处泰勒展开:

f(x+ϵ)=f(x)+ϵ⊤∇f(x)+12ϵ⊤∇∇⊤f(x)ϵ+O(∥ϵ∥3)
f(\mathbf{x}+\epsilon)=f(\mathbf{x})+\epsilon^{\top} \nabla f(\mathbf{x})+\frac{1}{2} \epsilon^{\top} \nabla \nabla^{\top} f(\mathbf{x}) \epsilon+\mathcal{O}\left(\|\epsilon\|^{3}\right)
f(x+ϵ)=f(x)+ϵ⊤∇f(x)+21​ϵ⊤∇∇⊤f(x)ϵ+O(∥ϵ∥3)

最小值点处满足: ∇f(x)=0\nabla f(\mathbf{x})=0∇f(x)=0, 即我们希望 ∇f(x+ϵ)=0\nabla f(\mathbf{x} + \epsilon)=0∇f(x+ϵ)=0, 对上式关于 ϵ\epsilonϵ 求导,忽略高阶无穷小,有:

∇f(x)+Hfϵ=0 and hence ϵ=−Hf−1∇f(x)
\nabla f(\mathbf{x})+\boldsymbol{H}_{f} \boldsymbol{\epsilon}=0 \text { and hence } \epsilon=-\boldsymbol{H}_{f}^{-1} \nabla f(\mathbf{x})
∇f(x)+Hf​ϵ=0 and hence ϵ=−Hf−1​∇f(x)

c = 0.5

def f(x):
return np.cosh(c * x) # Objective def gradf(x):
return c * np.sinh(c * x) # Derivative def hessf(x):
return c**2 * np.cosh(c * x) # Hessian # Hide learning rate for now
def newton(eta=1):
x = 10
results = [x]
for i in range(10):
x -= eta * gradf(x) / hessf(x)
results.append(x)
print('epoch 10, x:', x)
return results show_trace(newton())
epoch 10, x: 0.0

c = 0.15 * np.pi

def f(x):
return x * np.cos(c * x) def gradf(x):
return np.cos(c * x) - c * x * np.sin(c * x) def hessf(x):
return - 2 * c * np.sin(c * x) - x * c**2 * np.cos(c * x) show_trace(newton())
epoch 10, x: 26.83413291324767

show_trace(newton(0.5))
epoch 10, x: 7.269860168684531

收敛性分析

只考虑在函数为凸函数, 且最小值点上 f′′(x∗)>0f''(x^*) > 0f′′(x∗)>0 时的收敛速度:

令 xkx_kxk​ 为第 kkk 次迭代后 xxx 的值, ek:=xk−x∗e_{k}:=x_{k}-x^{*}ek​:=xk​−x∗ 表示 xkx_kxk​ 到最小值点 x∗x^{*}x∗ 的距离,由 f′(x∗)=0f'(x^{*}) = 0f′(x∗)=0:

0=f′(xk−ek)=f′(xk)−ekf′′(xk)+12ek2f′′′(ξk)for some ξk∈[xk−ek,xk]
0=f^{\prime}\left(x_{k}-e_{k}\right)=f^{\prime}\left(x_{k}\right)-e_{k} f^{\prime \prime}\left(x_{k}\right)+\frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) \text{for some } \xi_{k} \in\left[x_{k}-e_{k}, x_{k}\right]
0=f′(xk​−ek​)=f′(xk​)−ek​f′′(xk​)+21​ek2​f′′′(ξk​)for some ξk​∈[xk​−ek​,xk​]

两边除以 f′′(xk)f''(x_k)f′′(xk​), 有:

ek−f′(xk)/f′′(xk)=12ek2f′′′(ξk)/f′′(xk)
e_{k}-f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)=\frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right)
ek​−f′(xk​)/f′′(xk​)=21​ek2​f′′′(ξk​)/f′′(xk​)

代入更新方程 xk+1=xk−f′(xk)/f′′(xk)x_{k+1} = x_{k} - f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)xk+1​=xk​−f′(xk​)/f′′(xk​), 得到:

xk−x∗−f′(xk)/f′′(xk)=12ek2f′′′(ξk)/f′′(xk)
x_k - x^{*} - f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right) =\frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right)
xk​−x∗−f′(xk​)/f′′(xk​)=21​ek2​f′′′(ξk​)/f′′(xk​)

xk+1−x∗=ek+1=12ek2f′′′(ξk)/f′′(xk)
x_{k+1} - x^{*} = e_{k+1} = \frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right)
xk+1​−x∗=ek+1​=21​ek2​f′′′(ξk​)/f′′(xk​)

当 12f′′′(ξk)/f′′(xk)≤c\frac{1}{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right) \leq c21​f′′′(ξk​)/f′′(xk​)≤c 时,有:

ek+1≤cek2
e_{k+1} \leq c e_{k}^{2}
ek+1​≤cek2​

预处理 (Heissan阵辅助梯度下降)

x←x−ηdiag⁡(Hf)−1∇x
\mathbf{x} \leftarrow \mathbf{x}-\eta \operatorname{diag}\left(H_{f}\right)^{-1} \nabla \mathbf{x}
x←x−ηdiag(Hf​)−1∇x

梯度下降与线性搜索(共轭梯度法)

随机梯度下降

随机梯度下降参数更新

对于有 nnn 个样本对训练数据集,设 fi(x)f_i(x)fi​(x) 是第 iii 个样本的损失函数, 则目标函数为:

f(x)=1n∑i=1nfi(x)
f(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x})
f(x)=n1​i=1∑n​fi​(x)

其梯度为:

∇f(x)=1n∑i=1n∇fi(x)
\nabla f(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\mathbf{x})
∇f(x)=n1​i=1∑n​∇fi​(x)

使用该梯度的一次更新的时间复杂度为 O(n)\mathcal{O}(n)O(n)

随机梯度下降更新公式 O(1)\mathcal{O}(1)O(1):

x←x−η∇fi(x)
\mathbf{x} \leftarrow \mathbf{x}-\eta \nabla f_{i}(\mathbf{x})
x←x−η∇fi​(x)

且有:

Ei∇fi(x)=1n∑i=1n∇fi(x)=∇f(x)
\mathbb{E}_{i} \nabla f_{i}(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\mathbf{x})=\nabla f(\mathbf{x})
Ei​∇fi​(x)=n1​i=1∑n​∇fi​(x)=∇f(x)

e.g.

f(x1,x2)=x12+2x22
f(x_1, x_2) = x_1^2 + 2 x_2^2
f(x1​,x2​)=x12​+2x22​

def f(x1, x2):
return x1 ** 2 + 2 * x2 ** 2 # Objective def gradf(x1, x2):
return (2 * x1, 4 * x2) # Gradient def sgd(x1, x2): # Simulate noisy gradient
global lr # Learning rate scheduler
(g1, g2) = gradf(x1, x2) # Compute gradient
(g1, g2) = (g1 + np.random.normal(0.1), g2 + np.random.normal(0.1))
eta_t = eta * lr() # Learning rate at time t
return (x1 - eta_t * g1, x2 - eta_t * g2) # Update variables eta = 0.1
lr = (lambda: 1) # Constant learning rate
show_trace_2d(f, train_2d(sgd, steps=50))
epoch 50, x1 -0.027566, x2 0.137605

动态学习率

η(t)=ηi if ti≤t≤ti+1 piecewise constant η(t)=η0⋅e−λt exponential η(t)=η0⋅(βt+1)−α polynomial 
\begin{array}{ll}{\eta(t)=\eta_{i} \text { if } t_{i} \leq t \leq t_{i+1}} & {\text { piecewise constant }} \\ {\eta(t)=\eta_{0} \cdot e^{-\lambda t}} & {\text { exponential }} \\ {\eta(t)=\eta_{0} \cdot(\beta t+1)^{-\alpha}} & {\text { polynomial }}\end{array}
η(t)=ηi​ if ti​≤t≤ti+1​η(t)=η0​⋅e−λtη(t)=η0​⋅(βt+1)−α​ piecewise constant  exponential  polynomial ​

def exponential():
global ctr
ctr += 1
return math.exp(-0.1 * ctr) ctr = 1
lr = exponential # Set up learning rate
show_trace_2d(f, train_2d(sgd, steps=1000))
epoch 1000, x1 -0.677947, x2 -0.089379

def polynomial():
global ctr
ctr += 1
return (1 + 0.1 * ctr)**(-0.5) ctr = 1
lr = polynomial # Set up learning rate
show_trace_2d(f, train_2d(sgd, steps=50))
epoch 50, x1 -0.095244, x2 -0.041674

小批量随机梯度下降

读取数据

读取数据

def get_data_ch7():  # 本函数已保存在d2lzh_pytorch包中方便以后使用
data = np.genfromtxt('/home/kesci/input/airfoil4755/airfoil_self_noise.dat', delimiter='\t')
data = (data - data.mean(axis=0)) / data.std(axis=0) # 标准化
return torch.tensor(data[:1500, :-1], dtype=torch.float32), \
torch.tensor(data[:1500, -1], dtype=torch.float32) # 前1500个样本(每个样本5个特征) features, labels = get_data_ch7()
features.shape
torch.Size([1500, 5])
import pandas as pd
df = pd.read_csv('/home/kesci/input/airfoil4755/airfoil_self_noise.dat', delimiter='\t', header=None)
df.head(10)
0 1 2 3 4 5
0 800 0.0 0.3048 71.3 0.002663 126.201
1 1000 0.0 0.3048 71.3 0.002663 125.201
2 1250 0.0 0.3048 71.3 0.002663 125.951
3 1600 0.0 0.3048 71.3 0.002663 127.591
4 2000 0.0 0.3048 71.3 0.002663 127.461
5 2500 0.0 0.3048 71.3 0.002663 125.571
6 3150 0.0 0.3048 71.3 0.002663 125.201
7 4000 0.0 0.3048 71.3 0.002663 123.061
8 5000 0.0 0.3048 71.3 0.002663 121.301
9 6300 0.0 0.3048 71.3 0.002663 119.541

从零开始实现

def sgd(params, states, hyperparams):
for p in params:
p.data -= hyperparams['lr'] * p.grad.data
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_ch7(optimizer_fn, states, hyperparams, features, labels,
batch_size=10, num_epochs=2):
# 初始化模型
net, loss = d2l.linreg, d2l.squared_loss w = torch.nn.Parameter(torch.tensor(np.random.normal(0, 0.01, size=(features.shape[1], 1)), dtype=torch.float32),
requires_grad=True)
b = torch.nn.Parameter(torch.zeros(1, dtype=torch.float32), requires_grad=True) def eval_loss():
return loss(net(features, w, b), labels).mean().item() ls = [eval_loss()]
data_iter = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True) for _ in range(num_epochs):
start = time.time()
for batch_i, (X, y) in enumerate(data_iter):
l = loss(net(X, w, b), y).mean() # 使用平均损失 # 梯度清零
if w.grad is not None:
w.grad.data.zero_()
b.grad.data.zero_() l.backward()
optimizer_fn([w, b], states, hyperparams) # 迭代模型参数
if (batch_i + 1) * batch_size % 100 == 0:
ls.append(eval_loss()) # 每100个样本记录下当前训练误差
# 打印结果和作图
print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
d2l.set_figsize()
d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
d2l.plt.xlabel('epoch')
d2l.plt.ylabel('loss')
def train_sgd(lr, batch_size, num_epochs=2):
train_ch7(sgd, None, {'lr': lr}, features, labels, batch_size, num_epochs)

对比

train_sgd(1, 1500, 6)
loss: 0.244373, 0.009881 sec per epoch

train_sgd(0.005, 1)
loss: 0.245968, 0.463836 sec per epoch

train_sgd(0.05, 10)
loss: 0.243900, 0.065017 sec per epoch

简洁实现

# 本函数与原书不同的是这里第一个参数优化器函数而不是优化器的名字
# 例如: optimizer_fn=torch.optim.SGD, optimizer_hyperparams={"lr": 0.05}
def train_pytorch_ch7(optimizer_fn, optimizer_hyperparams, features, labels,
batch_size=10, num_epochs=2):
# 初始化模型
net = nn.Sequential(
nn.Linear(features.shape[-1], 1)
)
loss = nn.MSELoss()
optimizer = optimizer_fn(net.parameters(), **optimizer_hyperparams) def eval_loss():
return loss(net(features).view(-1), labels).item() / 2 ls = [eval_loss()]
data_iter = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True) for _ in range(num_epochs):
start = time.time()
for batch_i, (X, y) in enumerate(data_iter):
# 除以2是为了和train_ch7保持一致, 因为squared_loss中除了2
l = loss(net(X).view(-1), y) / 2 optimizer.zero_grad()
l.backward()
optimizer.step()
if (batch_i + 1) * batch_size % 100 == 0:
ls.append(eval_loss())
# 打印结果和作图
print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
d2l.set_figsize()
d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
d2l.plt.xlabel('epoch')
d2l.plt.ylabel('loss')
train_pytorch_ch7(optim.SGD, {"lr": 0.05}, features, labels, 10)
loss: 0.243770, 0.047664 sec per epoch

L20 梯度下降、随机梯度下降和小批量梯度下降的更多相关文章

  1. 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

      梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent ...

  2. 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD

    排版也是醉了见原文:http://www.cnblogs.com/maybe2030/p/5089753.html 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度 ...

  3. 梯度下降GD,随机梯度下降SGD,小批量梯度下降MBGD

    阅读过程中的其他解释: Batch和miniBatch:(广义)离线和在线的不同

  4. NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降

    1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...

  5. Tensorflow细节-P84-梯度下降与批量梯度下降

    1.批量梯度下降 批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新.从数学上理解如下: 对应的目标函数(代价函数)即为: (1)对目标函数求偏导: (2)每次迭代对参数进 ...

  6. 【深度学习】线性回归(Linear Regression)——原理、均方损失、小批量随机梯度下降

    1. 线性回归 回归(regression)问题指一类为一个或多个自变量与因变量之间关系建模的方法,通常用来表示输入和输出之间的关系. 机器学习领域中多数问题都与预测相关,当我们想预测一个数值时,就会 ...

  7. 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比[转]

    梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...

  8. 【转】 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比

    梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...

  9. batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)

    批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时updat ...

随机推荐

  1. hdu1224SPFA求最长路加上打印路径

    题目链接:http://icpc.njust.edu.cn/Problem/Hdu/1224/ 无负环. 代码如下: #include<bits/stdc++.h> using names ...

  2. 李宏毅老师机器学习课程笔记_ML Lecture 1: 回归案例研究

    引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...

  3. Linux Cgroup 入门教程:cpuset

    这是 Cgroup 系列的第四篇,往期回顾: Linux Cgroup 入门教程:基本概念 Linux Cgroup 入门教程:CPU Linux Cgroup 入门教程:内存 通过上篇文章的学习,我 ...

  4. 浅尝Go语言GC

    大家好,我是小栈君,因为个人和工作的缘故,所以拖更了一点时间,但是关于拖更的内容小栈君会在后续的时间中补回来,还希望大家继续支持和关注小栈君.当然,在国内疫情稍微减缓的情况下,小栈君在这里也多说两句, ...

  5. 学习GAN必须阅读的10篇论文

    本文转载自:魔图互联.欢迎访问网站查看详细教程:Tensorflow(pytorch)系列教程 生成对抗网络是深度学习中最有趣和最受欢迎的应用之一.本文将列出 10 篇关于 GAN 的论文,这些论文详 ...

  6. AJAX完全解读

    本文讲AJAX相关的知识全部讲解了一遍.要想入门,选择这篇文章完全够用 本文的知识图谱: AJAX的用处: ​ 在没有AJAX之前,每次从服务端获取数据都要刷新页面(也就是同步请求),这十分的麻烦.比 ...

  7. Java——类的定义

    对象和类的关系:有一个学生 ,需要在表格上填写自己的信息 ,那么这个打印机就像一个类 ,打印出的表格就是一个对象,用类创建对象,学生填的信息 ,就是我所初始化的信息. 类的组成:由 属性(也叫成员变量 ...

  8. nginx使用手册+基本原理+优缺点

    一.nginx优点 1.反向代理 1.正向代理: 客户端和原始服务器(origin server)之间的服务器,为了从原始服务器取得内容,客户端向代理发送一个请求并指定目标(原始服务器),然后代理向原 ...

  9. python 开发工具简介

    一.python 开发工具简介 1.IDLE IDLE是开发python程序的基本IDE(集成开发环境),具备基本的IDE的功能,是非商业Python开发的不错的选择.当安装好python以后,IDL ...

  10. js函数基础回顾

    回头又跑去看了下尚硅谷的js基础视频 https://www.bilibili.com/video/av22958172/?p=51. 便做了如下笔记: 1.函数也是一个对象 2.函数可以封装一些功能 ...