Chiaki has an n × m matrix A. Rows are numbered from 1 to n from top to bottom and columns are numbered from 1 to m from left to right. The element in the i-th row and the j-th column is Aij.

Let M({i1, i2, ..., is}, {j1, j2, ..., jt}) be the matrix that results from deleting row i1, i2, ..., is and column j1, j2, ..., jt of A and f({i1, i2, ..., is}, {j1, j2, ..., jt}) be the number of saddle points in matrix M({i1, i2, ..., is}, {j1, j2, ..., jt}).

Chiaki would like to find all the value of f({i1, i2, ..., is}, {j1, j2, ..., jt}). As the output may be very large ((2n - 1)(2m - 1) matrix in total), she is only interested in the value

Note that a saddle point of a matrix is an element which is both the only largest element in its column and the only smallest element in its row.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains four integers n and m (1 ≤ nm ≤ 1000) -- the number of rows and the number of columns.

Each of the next n lines contains m integer Ai, 1, Ai, 2, ..., Aim (1 ≤ Aij ≤ 106), where Aij is the integer in the i-th row and the j-th column.

It is guaranteed that neither the sum of all n nor the sum of all m exceeds 5000.

Output

For each test case, output an integer denoting the answer.

Sample Input

2
2 2
1 1
1 1
4 5
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

Sample Output

4
465 思路:saddle点的定义是行最小,列最大,那么我们就统计每一个点对saddle点的贡献,即这些点是saddle点的时候,去掉当前行比他大的列与当前列比他小的行对该点的贡献无影响,即是组合数从0到x,就是2^x,列同理,就是2^(x+y),快速幂+二分查找即可
typedef long long LL;

const int MOD = 1e9+;
const int maxm = ; int A[maxm][maxm], R[maxm][maxm], C[maxm][maxm]; LL quick_pow(LL a, LL b) {
LL ret = ;
while(b) {
if(b & ) ret = (ret * a) % MOD;
a = (a * a) % MOD;
b >>= ;
}
return ret;
} int main() {
int T, n, m;
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) {
scanf("%d", &A[i][j]);
R[i][j] = C[j][i] = A[i][j];
}
for(int i = ; i <= n; ++i)
sort(R[i]+, R[i]+m+);
for(int i = ; i <= m; ++i)
sort(C[i]+, C[i]++n); LL ans = ;
int row, col;
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
row = m-(upper_bound(R[i]+, R[i]++m, A[i][j]) - R[i] - ); // larger than A[i][j] in row
col = lower_bound(C[j]+, C[j]++n, A[i][j]) - C[j] - ; // lower than A[i][j] in column
ans = (ans+quick_pow(, col+row))%MOD;
}
}
printf("%lld\n", ans);
}
return ;
}

Day7 - C - Saddle Point ZOJ - 3955的更多相关文章

  1. Saddle Point ZOJ - 3955 题意题

    Chiaki has an n × m matrix A. Rows are numbered from 1 to n from top to bottom and columns are numbe ...

  2. Saddle Point ZOJ - 3955(求每个值得贡献)

    题意: 给出一个矩阵,删掉一些行和列之后 求剩下矩阵的鞍点的总个数 解析: 对于每个点 我们可以求出来 它所在的行和列  有多少比它大的 设为a 有多少比它小的 设为b 然后对于那些行和列 都有两种操 ...

  3. ZOJ 3955:Saddle Point(思维)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3955 题意:给出一个n*m的矩阵,定义矩阵中的特殊点Aij当且仅当Aij是 ...

  4. ZOJ 3955 Saddle Point

    排序. 枚举每一个格子,计算这个格子在多少矩阵中是鞍点,只要计算这一行有多少数字比他大,这一列有多少数字比他小,方案数乘一下就是这个格子对答案做出的贡献. #include<bits/stdc+ ...

  5. ZOJ 3955 Saddle Point 校赛 一道计数题

    ZOJ3955 题意是这样的 给定一个n*m的整数矩阵 n和m均小于1000 对这个矩阵删去任意行和列后剩余一个矩阵为M{x1,x2,,,,xm;y1,y2,,,,,yn}表示删除任意的M行N列 对于 ...

  6. ZOJ Saddle Point 数学思维题

    http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5564   根据它的定义是行最小,列最大. 可以证明鞍点是唯一的. ...

  7. ZOJ People Counting

    第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ  3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...

  8. ZOJ 3686 A Simple Tree Problem

    A Simple Tree Problem Time Limit: 3 Seconds      Memory Limit: 65536 KB Given a rooted tree, each no ...

  9. day7

    本节作业: 选课系统 角色:学校.学员.课程.讲师要求:1. 创建北京.上海 2 所学校2. 创建linux , python , go 3个课程 , linux\py 在北京开, go 在上海开3. ...

随机推荐

  1. SpringBoot报错笔记

    异常一: 1.访问所有方法路径都返回一个page: 截图: 出错原因:不知道 解决方法:新建项目 异常二: 提交表单信息报错 原因:映射文件和和表单的提交方式不统一 解决方法:统一方式即可: 错误三: ...

  2. Hibernate框架:org.hibernate.exception.SQLGrammarException: Cannot open connection at org.hibernate.exception.SQLStateConverter.convert(SQLStateConverter.java92)

    报错信息 org.hibernate.exception.SQLGrammarException: Cannot open connection at org.hibernate.exception. ...

  3. spring boot ApplicationRunner使用

    spring boot ApplicationRunner使用 它的使用比较简单,实现ApplicationRunner的run方法 package com.hikvision.pbg.jc.conf ...

  4. 常见Linux发行版有哪些?

    Linux 发行版(英语:Linux distribution,也被叫做GNU/Linux 发行版),为一般用户预先集成好的Linux操作系统及各种应用软件.一般用户不需要重新编译,在直接安装之后,只 ...

  5. 【转】ERP系统测试方法

    问题: 1.如何进行ERP系统测试用例设计? 2.ERP系统测试用例设计过程? 3.ERP系统测试用例设计的方法?    ERP系统本身是一种业务流程很复杂,单据报表众多,逻辑性很强的系统,质量保证方 ...

  6. SpringMVC 注解配置

    使用注解配置spring  mvc (1)spring mvc的配置文件 <?xml version="1.0" encoding="UTF-8"?> ...

  7. Redis有序集合类型

    命令 增加元素 ZADD score member [score member ...] > ZADD scoreboard 89 Tom 76 Peter 100 David (integer ...

  8. jqGrid 多选复选框 编辑列 方法事件

    参考:https://blog.csdn.net/zsq520520/article/details/53375284?locationNum=8&fps=1

  9. vue使用H5实现滚动到页面底部时加载数据

    使用原生vue实现瀑布流,发现无法实现小程序那种滚动到地步触发加载效果,只能自己研究了 实现效果: 实现代码: 首先添加监听滚动事件 mounted() { window.addEventListen ...

  10. Memcache和Redis的详细理解与区别

    1. Memcache Memcache是一个高性能,分布式内存对象缓存系统,通过在内存中缓存一个巨大的hash表,他能够存储包括图像,文件,索引,sql语句结果等数据,可以理解为它理解为一个为提升读 ...