一、关于Huffman树

Huffman树(哈夫曼树)可以解决下述问题:

  • 一颗\(n\)个叶节点的\(k\)叉树,第\(i\)个叶节点的权值为\(w_i\),现在欲求\(\sum w_i\times l_i\)的最小值,其中\(l_i\)表示第\(i\)个叶子节点到根结点的距离。

二、具体实现

为了保证\(\sum w_i\times l_i\)最小,我们应该保证权值越大的叶节点深度越小。可以看出,这是很简单的贪心思想。

特殊地,我们可以先从二叉Huffman树开始研究。二叉Huffman树的实现过程如下:

1.构造一个小根堆,依次插入这\(n\)个节点的权值。

2.从堆内依次取出权值最小的两个节点\(w_1,w_2\),令\(ans+=w_1+w_2\)。

3.把\(w_1+w_2\)作为新的节点\(w_3\),并插入到堆中。此时\(w_3\)为\(w_1,w_2\)的父亲节点。

4.重复上述操作,直到堆的大小等于1。

Huffman树并没有真正的建立一棵树,只是在操作的时候形成一棵树的结构。

下图是二叉Huffman树的具体执行过程:最终ans=33。

for(int i=1;i<n;i++){//n个数,操作(n-1)次
int x=q.top();q.pop();
int y=q.top();q.pop();
q.push(x+y);
ans+=x+y;
}

例1:P1090 合并果子

分析:

因为多多每次合并消耗的体力等于要合并的两堆果子的重量之和,所以最终消耗的体力就是每堆果子的重量\(\times\)合并的次数。这正符合Huffman树能解决的问题类型。

代码如下:

#include<bits/stdc++.h>
using namespace std;
priority_queue<int,vector<int>,greater<int> > q;//小根堆
int a[10010],ans;
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
q.push(a[i]);
}
while(n!=1){//重复操作直到只剩下一个节点
int x=q.top();q.pop();
int y=q.top();q.pop();
q.push(x+y);
ans+=x+y;
n--;
}
printf("%d",ans);
return 0;
}

现在我们由二叉延伸到k叉Huffman树。此时将每次取出的2个数改为k个数。这时存在一个问题,在最后一次取值时,剩余的节点可能不足以取出k个。显然这样不是最优解,当我们任取Huffman树中一个深度最大的节点,并改为树根的子节点,此时\(\sum w_i \times l_i\)就会更小。

因此只有我们补加一些额外的空节点,并将这些空节点放置在最底层时才能保证贪心算法的正确性。

当\((n-1)mod(k-1)\neq 0\)时,我们还需要补充\((k-1)-(n-1)mod(k-1)\)个节点保证等式\((n-1)mod(k-1)=0\)成立。

例2:P2168 [NOI2015]荷马史诗

分析:

这道题构造的编码方式其实就是Huffman编码,我们把单词出现的次数作为Huffman树的叶节点的权值,然后求出k叉Huffman树即可。

代码如下:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
struct node{
ll h,w;
bool operator <(const node &other)const{
return (w!=other.w)? w>other.w:h>other.h;
}
};
priority_queue<node> q;
int n,k,sum;
ll t,ans;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%lld",&t);
q.push((node){1,t});
}
if((n-1)%(k-1)) sum=(k-1)-(n-1)%(k-1);
for(int i=1;i<=sum;i++) q.push((node){1,0});
sum+=n;
while(sum!=1){
ll partw=0,maxh=0;
for(int i=1;i<=k;i++){
node now=q.top();q.pop();
partw+=now.w;
maxh=max(maxh,now.h);
}
ans+=partw;
q.push((node){maxh+1,partw});
sum-=(k-1);
}
printf("%lld\n%lld",ans,q.top().h-1);
return 0;
}

[算法]Huffman树(哈夫曼树)的更多相关文章

  1. Huffman Tree (哈夫曼树学习)

    WPL 和哈夫曼树 哈夫曼树,又称最优二叉树,是一棵带权值路径长度(WPL,Weighted Path Length of Tree)最短的树,权值较大的节点离根更近. 首先介绍一下什么是 WPL,其 ...

  2. 树-哈夫曼树(Huffman Tree)

    概述 哈夫曼树:树的带权路径长度达到最小. 构造规则 1. 将w1.w2.-,wn看成是有n 棵树的森林(每棵树仅有一个结点): 2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左. ...

  3. 【算法】赫夫曼树(Huffman)的构建和应用(编码、译码)

    参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>       ...

  4. [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)

    一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...

  5. 经典树与图论(最小生成树、哈夫曼树、最短路径问题---Dijkstra算法)

    参考网址: https://www.jianshu.com/p/cb5af6b5096d 算法导论--最小生成树 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树. im ...

  6. 哈夫曼树(三)之 Java详解

    前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...

  7. 哈夫曼树(二)之 C++详解

    上一章介绍了哈夫曼树的基本概念,并通过C语言实现了哈夫曼树.本章是哈夫曼树的C++实现. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载 ...

  8. 哈夫曼树(一)之 C语言详解

    本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若 ...

  9. 哈夫曼树——c++

    哈夫曼树的介绍 Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树. 定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树. 这个定 ...

随机推荐

  1. linux入门系列19--数据库管理系统(DBMS)之MariaDB

    前面讲完Linux下一系列服务的配置和使用之后,本文简单介绍一款数据库管理系统(MySQL的兄弟)MariaDB. 如果你有MySQL或其他数据的使用经验,MariaDB使用起来将非常轻松. 本文讲解 ...

  2. Go语言之Go语言变量

    GO 语言变量 Go语言是静态类型语言,因此变量(variable)是有明确类型的,编译器也会检查变量类型的正确性. 标识符 在编程语言中标识符就是程序员定义的具有特殊意义的词,比如变量名.常量名.函 ...

  3. Java集合框架要点概括(Core Knowledge of Java Collection)

    目录 有哪些集合类 Set类 Queue类 List类 Map类 HashMap的实现原理,是否线程安全,如何使其做到线程安全 HashMap的实现原理 HashMap的数据结构 HashMap的存取 ...

  4. 在django中如何从零开始搭建一个mock服务

    mock概念 mock 就是模拟接口返回的一系列数据,用自定义的数据替换接口实际需要返回的数据,通过自定义的数据来实现对下级接口模块的测试.这里分为两类测试:一类是前端对接口的mock,一类是后端单元 ...

  5. 一篇文章让你了解动态数组的数据结构的实现过程(Java 实现)

    目录 数组基础简单回顾 二次封装数组类设计 基本设计 向数组中添加元素 在数组中查询元素和修改元素 数组中的包含.搜索和删除元素 使用泛型使该类更加通用(能够存放 "任意" 数据类 ...

  6. Consul+Nginx部署高可用

    1. Consul Server 创建consul server虚拟主机 docker-machine create consul 出现如下内容即创建成功 Running pre-create che ...

  7. Ubuntu添加新用户并给普通用户赋予root新权限

    添加新用户 首先用adduser命令添加普通用户: #adduser newusername 只有在root权限才可以添加新用户 修改密码: #passwd username 赋予root权限 方法1 ...

  8. opentsdb探索之路——部分设计与实现

    opentsdb 概览(overview) opentsdb 存储细节(Writing) rowkey的设计 rowkey的具体实现 压缩(compaction) 追加模式(appends) open ...

  9. B. Lost Number【CF交互题 暴力】

    B. Lost Number[CF交互题 暴力] This is an interactive problem. Remember to flush your output while communi ...

  10. Java运行时数据区域划分

    Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域.这些区域都有各自的用途,以及创建和销毁时间.根据<Java虚拟机规范(Java SE 7版>的规定,J ...