埃琳娜(Elina)正在阅读刘如家(Rujia Liu)写的书,其中介绍了一种表达非负整数的奇怪方法。方式描述如下:

选择k个不同的正整数a 1,a 2,…,a k。对于一些非负米,把它由每一个我(1≤ 我 ≤ ķ)找到其余ř 我。如果一个1,一个2,…,一个ķ适当地选择,M可以是确定的,则对(一个我,- [R 我)可被用来表达米。

“从m来计算对很容易,” Elina说。“但是我怎么能从两对中找到m?”

由于Elina是编程新手,所以这个问题对她来说太难了。你能帮她吗?

输入项

输入包含多个测试用例。每个测试用例由几行组成。

第1行:包含整数k。

线2〜ķ + 1:每个包含一对整数一个我,- [R 我(1≤ 我 ≤ ķ)。

输出量

对于每个测试用例,在单独的行上输出非负整数m。如果有多个可能的值,请输出最小的一个。如果没有可能的值,则输出-1。

样本输入

2

8 7

11 9

样本输出

31

题目大意:现在将数表示成一种新的形式,即用一个数去除多个数mk,分别得到余数rk,用这些(除数,余数)对来唯一确定本来的数字。有了数num和m1~mn很容易表示成这种形式,但是现在反过来,给你n个(mk,rk)对,让你确定这个数num是多少?不存在输出-1.

裸的解线性同余方程组。

直接上扩展偶近距离的定理完事。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const ll p = 9973;
void exgcd(ll a, ll b, ll &d, ll &x, ll &y)
{
if (!b)
{
x = 1, y = 0, d = a;
return;
}
exgcd(b, a % b, d, y, x);
y -= (a / b) * x;
}
int main()
{
while (~scanf("%I64d", &n))
{
ll a1, r1, a2, r2;
scanf("%I64d%I64d", &a1, &r1);
bool flag = 1;
REP(i, 2, n)
{
ll d, x, y;
scanf("%I64d%I64d", &a2, &r2);
ll ans = 0;
exgcd(a1, a2, d, x, y); //扩展欧几里德算法
if ((r2 - r1) % d)
flag = 0; //扩展欧几里德算法的性质,如果不能整除,则无法合并。
else
{
x *= ((r2 - r1) / d);
ll n1 = a2 / d;
x = (x % n1 + n1) % n1; //x不断地加a2/gcd直到x大于0,如果用循环的话会超时,x可以通过直接取模计算。由于这里用不到y的值,所以暂时可以不用管
r1 = a1 * x + r1; //这相当于是x0的值
a1 = (a1 * a2) / d; //将a1变成a1和a2的最小公倍数
}
}
if (flag)
printf("%I64d\n", r1);
else
printf("-1\n");
}
}

数学--数论--POJ281(线性同余方程)的更多相关文章

  1. 数论之同余性质 线性同余方程&拔山盖世BSGS&中国剩余定理

    先记录一下一些概念和定理 同余:给定整数a,b,c,若用c不停的去除a和b最终所得余数一样,则称a和b对模c同余,记做a≡b (mod c),同余满足自反性,对称性,传递性 定理1: 若a≡b (mo ...

  2. 数论 - n元线性同余方程的解法

    note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m       ...

  3. Panasonic Programming Contest (AtCoder Beginner Contest 186) E.Throne (数学,线性同余方程)

    题意:有围着一圈的\(N\)把椅子,其中有一个是冠位,你在离冠位顺时针\(S\)把椅子的位置,你每次可以顺时针走\(K\)个椅子,问最少要走多少次才能登上冠位,或者走不到冠位. 题解:这题和洛谷那个青 ...

  4. POJ2115:C Looooops(一元线性同余方程)

    题目: http://poj.org/problem?id=2115 要求: 会求最优解,会求这d个解,即(x+(i-1)*b/d)modm;(看最后那个博客的链接地址) 前两天用二元一次线性方程解过 ...

  5. codeforces 710D Two Arithmetic Progressions(线性同余方程)

    题目链接: http://codeforces.com/problemset/problem/710/D 分析:给你两个方程 a1k + b1 and a2l + b2,求在一个闭区间[L,R]中有多 ...

  6. 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))

    我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...

  7. POJ2115 C Looooops(线性同余方程)

    无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} ...

  8. POJ1061 青蛙的约会(线性同余方程)

    线性同余方程$ ax \equiv b \pmod n$可以用扩展欧几里得算法求解. 这一题假设青蛙们跳t次后相遇,则可列方程: $$ Mt+X \equiv Nt+Y \pmod L$$ $$ (M ...

  9. POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)

    分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...

随机推荐

  1. MySQL入门,第一部分,全局管理命令

    1.连接数据库命令 mysql -h localhost -u root -p 回车后输入密码即可连接到数据库 2.显示当前mysql管理系统中的所有数据库 SHOW DATABASES; 3.显示当 ...

  2. Boyer-Moore字符串搜索(BM算法)的Python实现

    BM算法根据两个判据来进行字符串匹配,分别是“坏字符规则”和‘好后缀规则",其中好后缀规则可以单独使用,算法的图解可以参照下面这篇博文: https://www.cnblogs.com/wx ...

  3. Python爬虫利器 cURL你用过吗?

    hello,小伙伴们,今天给大家分享的开源项目是一个python爬虫利器,感兴趣的小伙伴看完这篇文章不妨去尝试一下,这个开源项目就是curlconverter,不知道小伙伴们分析完整个网站后去code ...

  4. 八、路由详细介绍之动态路由OSPF(重点)

    一.OSPF介绍 OSPF优点:无环路.收敛快.扩展性好.支持认证 二.工作原理: 图中RTA.RTB.RTC每个路由器都会生成一个LSA, 通过LSA泛洪进行互相发送相互学习,形成LSDB (链路状 ...

  5. shell http请求&处理返回值获取其中某个字段的值

    并且第一个接口的返回值中部分参数得作为第二个接口的入参,所以做了如下shell验证 第一个接口返回的response body串: { "bizCode": "1&quo ...

  6. alg-最长不重复子串

    class Solution { public: int lengthOfLongestSubstring(const std::string& s) { int max_length = 0 ...

  7. ConcurrentHashMap 同步安全 的真正含义(stringbuff 是同步安全的,stringbutter 不安全)

    同步安全的集合,在多线程下用到这个map是安全的,但这个安全指的是什么?线程安全指的是指get.remove.put等操作时即同一对象,同一时间只有一个线程能在这几个方法上运行,也就是说线程安全是在这 ...

  8. 【小学数学】算术口诀 独立音频MP3

    算术口诀 独立音频MP3 原文载于本人个人网站:http://www.unlimitedbladeworks.cc/writing_202004_01_sskj 特点 加法口诀 乘法口诀 独立音频 m ...

  9. ThreeJs 导入外部三维模型,并实现鼠标滚动放大缩小旋转效果

    let i = ; function init() { // create a scene, that will hold all our elements such as objects, came ...

  10. 小程序运行时如何助力传统APP转型?

    小程序和H5或者RN有什么区别?优越性在哪里? 长期以来,移动互联网界一直在寻找一种既能获得Native原生的体验,又可以低门槛快速开发的技术.在这个过程中出现了很多尝试,例如React Native ...