数学--数论--POJ281(线性同余方程)
埃琳娜(Elina)正在阅读刘如家(Rujia Liu)写的书,其中介绍了一种表达非负整数的奇怪方法。方式描述如下:
选择k个不同的正整数a 1,a 2,…,a k。对于一些非负米,把它由每一个我(1≤ 我 ≤ ķ)找到其余ř 我。如果一个1,一个2,…,一个ķ适当地选择,M可以是确定的,则对(一个我,- [R 我)可被用来表达米。
“从m来计算对很容易,” Elina说。“但是我怎么能从两对中找到m?”
由于Elina是编程新手,所以这个问题对她来说太难了。你能帮她吗?
输入项
输入包含多个测试用例。每个测试用例由几行组成。
第1行:包含整数k。
线2〜ķ + 1:每个包含一对整数一个我,- [R 我(1≤ 我 ≤ ķ)。
输出量
对于每个测试用例,在单独的行上输出非负整数m。如果有多个可能的值,请输出最小的一个。如果没有可能的值,则输出-1。
样本输入
2
8 7
11 9
样本输出
31
题目大意:现在将数表示成一种新的形式,即用一个数去除多个数mk,分别得到余数rk,用这些(除数,余数)对来唯一确定本来的数字。有了数num和m1~mn很容易表示成这种形式,但是现在反过来,给你n个(mk,rk)对,让你确定这个数num是多少?不存在输出-1.
裸的解线性同余方程组。
直接上扩展偶近距离的定理完事。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const ll p = 9973;
void exgcd(ll a, ll b, ll &d, ll &x, ll &y)
{
if (!b)
{
x = 1, y = 0, d = a;
return;
}
exgcd(b, a % b, d, y, x);
y -= (a / b) * x;
}
int main()
{
while (~scanf("%I64d", &n))
{
ll a1, r1, a2, r2;
scanf("%I64d%I64d", &a1, &r1);
bool flag = 1;
REP(i, 2, n)
{
ll d, x, y;
scanf("%I64d%I64d", &a2, &r2);
ll ans = 0;
exgcd(a1, a2, d, x, y); //扩展欧几里德算法
if ((r2 - r1) % d)
flag = 0; //扩展欧几里德算法的性质,如果不能整除,则无法合并。
else
{
x *= ((r2 - r1) / d);
ll n1 = a2 / d;
x = (x % n1 + n1) % n1; //x不断地加a2/gcd直到x大于0,如果用循环的话会超时,x可以通过直接取模计算。由于这里用不到y的值,所以暂时可以不用管
r1 = a1 * x + r1; //这相当于是x0的值
a1 = (a1 * a2) / d; //将a1变成a1和a2的最小公倍数
}
}
if (flag)
printf("%I64d\n", r1);
else
printf("-1\n");
}
}
数学--数论--POJ281(线性同余方程)的更多相关文章
- 数论之同余性质 线性同余方程&拔山盖世BSGS&中国剩余定理
先记录一下一些概念和定理 同余:给定整数a,b,c,若用c不停的去除a和b最终所得余数一样,则称a和b对模c同余,记做a≡b (mod c),同余满足自反性,对称性,传递性 定理1: 若a≡b (mo ...
- 数论 - n元线性同余方程的解法
note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m ...
- Panasonic Programming Contest (AtCoder Beginner Contest 186) E.Throne (数学,线性同余方程)
题意:有围着一圈的\(N\)把椅子,其中有一个是冠位,你在离冠位顺时针\(S\)把椅子的位置,你每次可以顺时针走\(K\)个椅子,问最少要走多少次才能登上冠位,或者走不到冠位. 题解:这题和洛谷那个青 ...
- POJ2115:C Looooops(一元线性同余方程)
题目: http://poj.org/problem?id=2115 要求: 会求最优解,会求这d个解,即(x+(i-1)*b/d)modm;(看最后那个博客的链接地址) 前两天用二元一次线性方程解过 ...
- codeforces 710D Two Arithmetic Progressions(线性同余方程)
题目链接: http://codeforces.com/problemset/problem/710/D 分析:给你两个方程 a1k + b1 and a2l + b2,求在一个闭区间[L,R]中有多 ...
- 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...
- POJ2115 C Looooops(线性同余方程)
无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} ...
- POJ1061 青蛙的约会(线性同余方程)
线性同余方程$ ax \equiv b \pmod n$可以用扩展欧几里得算法求解. 这一题假设青蛙们跳t次后相遇,则可列方程: $$ Mt+X \equiv Nt+Y \pmod L$$ $$ (M ...
- POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)
分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...
随机推荐
- Android视频悬浮窗口实现
前言 本文例子实现了点击显示悬浮窗口,同时窗口可播放视频,拖动位置,点击关闭及返回APP页面,通过例子来讲述悬浮窗口实现原理及细节处理,效果图如下所示: 原理 WindowManager对View视图 ...
- spring-cloud feign的多参数传递方案
查看原文 一.GET请求多参数URL 1.方法一(推荐) @FeignClient(“microservice-provider-user”) public interface UserFeignCl ...
- 【C#】写一个支持多人聊天的TCP程序
碎碎念 先谈谈我们要实现的效果:客户端可以选择要聊天的对象,或者直接广播消息(类似QQ的私聊和群消息) 那么,该如何实现呢? 首先明确的是,要分客户端和服务器端两个部分(废话) 客户端:选择要发送的对 ...
- tf.nn.max_pool 池化
tf.nn.max_pool( value, ksize, strides, padding, data_format='NHWC', name=None ) 参数: value:由data_form ...
- 基于ffmpeg不同编码方式转码后的psnr对比
一.测试说明: 源文件:1080psrc.mp4 时长:900秒 源文件信息:Video: h264 (High) (avc1 / 0x31637661), yuv420p, 1920x1080 [S ...
- loadrunner post请求
注意:loadrunner参数中的引号,需要自己加"\" post 请求,分为header 和body两个部分处理 header部分比较容易处理,使用函数实现,如web_add_h ...
- 【python实现卷积神经网络】开始训练
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 使用Jmeter测试java请求
1.性能测试过程中,有时候开发想对JAVA代码进行性能测试,Jmeter是支持对Java请求进行性能测试,但是需要自己开发.打包好要测试的代码,就能在Java请求中对该java方法进行性能测试2.本文 ...
- 08-less预处理器
一.less预处理器 Less(LeanerStyle Sheets 的缩写)是一门 CSS扩展语言,也成为CSS预处理器. 1.插件安装 安装Easy LESS插件就能使写入的.less文件保存时自 ...
- Volatile不保证原子性(二)
Volatile不保证原子性 前言 通过前面对JMM的介绍,我们知道,各个线程对主内存中共享变量的操作都是各个线程各自拷贝到自己的工作内存进行操作后在写回到主内存中的. 这就可能存在一个线程AAA修改 ...