【LOJ2513】「BJOI2018」治疗之雨
题意
你现在有 \(m+1\) 个数:第一个为 \(p\) ,最小值为 \(0\) ,最大值为 \(n\) ;剩下 \(m\) 个都是无穷,没有最小值或最大值。你可以进行任意多轮操作,每轮操作如下:
在不为最大值的数中等概率随机选择一个(如果没有则不操作),把它加一;
进行 \(k\) 次这个步骤:在不为最小值的数中等概率随机选择一个(如果没有则不操作),把它减一。
现在问期望进行多少轮操作以后第一个数会变为最小值 \(0\)。
\(1 \leq p \leq n \leq 1500\) ,\(0 \leq m, k \leq 10^9\) 。
Solution
显然我们只用考虑第一个数的变化。
设 \(P_x\) 表示一次操作 \(-x\) 概率,即 \(k\) 次中选出 \(x\) 次,剩余 \(k-x\) 次分配到其他 \(m\) 个数。
\]
设 \(Q_{x,y}\) 表示一次操作从 \(x\) 变到 \(y\) 的概率,不难推出
\left\{
\begin{array}{lr}
0 & x=n 且 y=n+1 &\\
P_{x-y} & x=n\\
\frac{1}{m+1}P_0 & y=x+1\\
\frac{m}{m+1}P_{x-y}+\frac{1}{m+1}P_{x-y+1} & \text{otherwise}
\end{array}
\right.
\end{equation}
\]
设 \(f(i)\) 表示从 \(i\) 变到 \(0\) 的期望操作数。
& f(i)=1+\sum_{j=1}^{i+1} Q_{i,j}f(j) & (1\le i<n) \\
& f(n)=1+\sum_{j=1}^nQ_{n,j}f(j)
\end{align}
\]
我们可以 \(n^2\) 消元上述式子。将 \((1)\) 变形可得
f(i+1)=\frac{f(i)-\sum_{j=1}^iQ_{i,j}f(j)-1}{Q_{i,i+1}}
\end{align}
\]
可以利用 \((3),(4)\) 得到 \(f(n)\) 关于 \(f(1)\) 的两个方程,解出 \(f(1)\) 后带入即可。
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int Mod=1e9+7,N=1505;
inline int mul(int x, int y) { return 1ll*x*y%Mod; }
inline int po(int x, int y)
{
int r=1;
while(y)
{
if(y&1) r=mul(r,x);
x=mul(x,x), y>>=1;
}
return r;
}
int f[N],x[N],y[N],fac[N],inv[N],n,p,m,k,iv;
inline int calcp(int x, int y)
{
if(x==n&&y==n+1) return 0;
if(x==n) return f[x-y];
if(y==x+1) return mul(iv,f[0]);
return (mul(mul(m,iv),f[x-y])+mul(f[x-y+1],iv))%Mod;
}
int main()
{
int T; scanf("%d",&T);
fac[0]=inv[0]=1;
for(int i=1;i<=1500;++i) fac[i]=mul(i,fac[i-1]);
inv[1500]=po(fac[1500],Mod-2);
for(int i=1499;i;--i) inv[i]=mul(inv[i+1],i+1);
while(T--)
{
scanf("%d%d%d%d",&n,&p,&m,&k);
if(!k||(!m&&k==1))
{
puts("-1");
continue;
}
if(!m)
{
int ans=0;
while(p>0)
{
if(p<n) ++p;
p-=k,++ans;
}
printf("%d\n",ans);
continue;
}
int inv0=po(m,Mod-2),inv1=po(po(m+1,k),Mod-2);
iv=po(m+1,Mod-2);
for(int i=0,j=1,g=po(m,k),l=min(n,k);i<=l;++i)
{
f[i]=mul(mul(mul(j,inv[i]),g),inv1);
j=mul(j,k-i),g=mul(g,inv0);
}
x[1]=1,y[1]=0;
for(int i=2;i<=n;++i)
{
x[i]=x[i-1],y[i]=(Mod+y[i-1]-1)%Mod;
for(int j=1;j<i;++j)
{
int tmp=calcp(i-1,j);
x[i]=(x[i]+Mod-mul(x[j],tmp))%Mod;
y[i]=(y[i]+Mod-mul(y[j],tmp))%Mod;
}
int tmp=po(calcp(i-1,i),Mod-2);
x[i]=mul(x[i],tmp),y[i]=mul(y[i],tmp);
}
int nx=0,ny=1;
for(int i=1;i<=n;++i)
{
int tmp=calcp(n,i);
nx=(nx+mul(x[i],tmp))%Mod;
ny=(ny+mul(y[i],tmp))%Mod;
}
int tmp=mul((ny-y[n]+Mod)%Mod,po((x[n]-nx+Mod)%Mod,Mod-2));
printf("%d\n",(mul(tmp,x[p])+y[p])%Mod);
memset(f,0,sizeof(int)*(min(n,k)+1));
}
}
【LOJ2513】「BJOI2018」治疗之雨的更多相关文章
- 【LOJ】#2513. 「BJOI2018」治疗之雨
题解 具体就是列一个未知数方程\(dp[i]\)表示有\(i\)滴血的时候期望多少轮 \(dp[i] = 1 + \sum_{j = 1}^{i + 1} a_{i,j}dp[j]\) \(dp[n] ...
- 「BJOI2018」治疗之雨
传送门 Description 有\(m+1\)个数,第一个数为\(p\),每轮:选一个数\(+1\),再依次选\(k\)个数\(-1\) 要求如果第一个数\(=N\),不能选它\(+1\),如果第一 ...
- 「BJOI2018」链上二次求和
「BJOI2018」链上二次求和 https://loj.ac/problem/2512 我说今天上午写博客吧.怕自己写一上午,就决定先写道题. 然后我就调了一上午线段树. 花了2h找到lazy标记没 ...
- 「BJOI2018」求和
「BJOI2018」求和 传送门 观察到 \(k\) 很小而且模数不会变,所以我们直接预处理 \(k\) 取所有值时树上前缀答案,查询的时候差分一下即可. 参考代码: #include <alg ...
- 【LOJ】#2511. 「BJOI2018」双人猜数游戏
题解 设\(f[p][a][b]\)表示询问了\(p\)次,答案是\(a,b\)是否会被猜出来 然后判断如果\(p = 1\) 第一个问的\(Alice\),那么\([s,\sqrt{nm}]\)约数 ...
- 【LOJ】#2493. 「BJOI2018」染色
题面 题解 推结论大题--然而我推不出什么结论 奇环显然是NO 如果一个联通块里有两个分离的环,也是NO 如果一个联通块里,点数为n,边数为m m <= n的时候,是YES m >= n ...
- 【LOJ】#2492. 「BJOI2018」二进制
题解 每次开这样的数据结构题感想都大概是如下两点 1.为什么别人代码长度都是我的1/2???? 2.为什么我运行时间都是他们的两倍???? 简单分析一下,我们关注一个区间是否合法只关注这个区间有多少个 ...
- 【LOJ】#2512. 「BJOI2018」链上二次求和
题面 题解 转化一下可以变成所有小于等于r的减去小于等于l - 1的 然后我们求小于等于x的 显然是 \(\sum_{i = 1}^{n} \sum_{j = 1}^{min(i,x)} sum[i] ...
- 【LOJ】#2491. 「BJOI2018」求和
题解 对于50个k都维护一个\(i^k\)前缀和即可 查询的时候就是查询一段连续的区间和,再加上根节点的 代码 #include <bits/stdc++.h> #define fi fi ...
随机推荐
- ArrayList、Vector和LinkedList
List接口特点 1.有序的 collection. 2.可以对列表中每个元素的插入位置进行精确地控制. 3.可以根据元素的索引访问元素,并搜索列表中的元素. 4.列表通常允许重复的元素. 5.允许存 ...
- 华水开学第一课&微信支付
由于疫情的延续,导致我们不能及时开学.只能在网上观看华水开学第一课,但是好像正常开学也没有这个哈哈(不记得了) 昨天没有玩到很晚,12点就睡下.大约半个小时睡着了.定了8点的闹钟.起来的时候那是真的困 ...
- wc、grep 、 cut、paste 和 tr 命令的用法
1 wc 命令 wc 命令是一个统计的工具,主要用来显示文件所包含的行.字和字节数. wc 命令是 word count 的缩写. (1)命令格式 wc [选项] [文件] (2)常用参数 参数 描述 ...
- SpringBoot yml文件语法
SpringBoot提供了大量的默认配置,如果要修改默认配置,需要在配置文件中修改. SpringBoot默认会加载resource下的配置文件: application*.yml applicati ...
- centOS+DJango+mysql_nginx部署流程记录
安装Python3.6.2: https://www.jianshu.com/p/7a76bcc401a1 安装MySQL: https://www.cnblogs.com/luohanguo/p/9 ...
- 附:Struts2-CRM,拦截器实现权限访问
拦截器代码: package mycrm.interceptor; import org.apache.struts2.ServletActionContext; import com.opensym ...
- 吴裕雄--天生自然ORACLE数据库学习笔记:用户管理与权限分配
create user mr identified by mrsoft default tablespace users temporary tablespace temp; create user ...
- python爬虫(九) requests库之post请求
1.方法: response=requests.post("https://www.baidu.com/s",data=data) 2.拉勾网职位信息获取 因为拉勾网设置了反爬虫机 ...
- 南京江行智能获得百度和松禾资本的A+轮融资
导读 据公司情报专家<财经涂鸦>消息,南京江行联加智能科技有限公司(江行智能)获得百度 和松禾资本的A+ 轮融资. 天眼查信息显示,12 月 8 日,公司工商信息发生变更,股东新增了广州百 ...
- JS原型与原型链继承的理解
一.原型 先从构造函数开始吧! 构造函数是什么?构造函数与其他函数唯一的区别在于调用方式不同.任何函数只要通过new来调用就可以作为构造函数,它是用来创建特定类型的对象. 下面定义一个构造函数 Fem ...