【poj1284-Primitive Roots】欧拉函数-奇素数的原根个数
http://poj.org/problem?id=1284
题意:给定一个奇素数p,求p的原根个数。
原根: { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 },则x是p的原根。
题解:结论:奇素数p的原根个数为phi(p-1)。
证明:
对于给出的素数p,
首先要明确一点:p的元根必然是存在的(这一点已由Euler证明,此处不再赘述),因此,不妨设其中的一个元根是a0(1<=a0<=p-1)
按照题目的定义,a0^i(1<=i<=p-1) mod p的值是各不相同的,再由p是素数,联系Fermat小定理可知:q^(p-1) mod p=1;(1<=q<=p-1)(这个在下面有用)
下面证明,如果b是p的一个异于a的元根,不妨令b与a0^t关于p同余,那么必然有gcd(t,p-1)=1,亦即t与p-1互质;反之亦然;
证明:
若d=gcd(t,p-1)>1,令t=k1*d,p-1=k2*d,则由Fermat可知
(a0^(k1*d))^k2 mod p=(a0^(k2*d))^(k1) mod p=(a0^(p-1))^(k1) mod p=1
再由b=a0^t (mod p),结合上面的式子可知:
(a0^(k1*d))^k2 mod n=b^k2 mod p=1;
然而b^0 mod p=1,所以b^0=b^k2 (mod p),所以b^i mod p的循环节=k2<p-1,因此这样的b不是元根; 再证,若d=gcd(t,p-1)=1,即t与p-1互质,那么b必然是元根;
否则假设存在1<=j<i<=p-1,使得b^j=b^i (mod p),即a0^(j*t)=a0^(i*t) (mod p),由a0是元根,即a0的循环节长度是(p-1)可知,(p-1) | (i*t-j*t)->(p-1) | t*(i-j),由于p与
t互质,所以(p-1) | (i-j),但是根据假设,0<i-j<p-1,得出矛盾,结论得证; 由上面的两个证明可知b=a0^t (mod p),是一个元根的充要条件是t与p-1互质,所有的这些t的总个数就是Phi(p-1); 引用自http://poj.org/showmessage?message_id=158630
这个证明非常机智啊,我就根本没有想到要拆分p-1和t。要记住这种拆分的思路。注明:Fermat就是费马小定理。。
因为题目的数据范围比较小,所以我就没有用欧拉筛直接分解质因数了。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std; typedef long long LL; LL eular(LL x)
{
LL ans=x,k=;
while(x!=)
{
if(x%k==)
{
ans/=k;
ans*=(k-);
}
while(x%k==) x/=k;
k++;
}
return ans;
} int main()
{
// freopen("a.in","r",stdin);
// freopen("a.out","w",stdout);
LL x;
while(scanf("%I64d",&x)!=EOF)
{
printf("%I64d\n",eular(x-));
}
return ;
}
【poj1284-Primitive Roots】欧拉函数-奇素数的原根个数的更多相关文章
- POJ1284 Primitive Roots [欧拉函数,原根]
题目传送门 Primitive Roots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5434 Accepted: ...
- (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))
/* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...
- 【POJ1284】Primitive Roots 欧拉函数
题目描述: 题意: 定义原根:对于一个整数x,0<x<p,是一个mod p下的原根,当且仅当集合{ (xi mod p) | 1 <= i <= p-1 } 等于{ 1, .. ...
- POJ 1284 Primitive Roots (欧拉函数+原根)
<题目链接> 题目大意: 满足{ ( $x^{i}$ mod p) | 1 <=$i$ <= p-1 } == { 1, …, p-1 }的x称为模p的原根.给出p,求原根个数 ...
- UVA10200-Prime Time/HDU2161-Primes,例题讲解,牛逼的费马小定理和欧拉函数判素数。
10200 - Prime Time 此题极坑(本菜太弱),鉴定完毕,9遍过. 题意:很简单的求一个区间 ...
- poj1284 && caioj 1159 欧拉函数1:原根
这道题不知道这个定理很难做出来. 除非暴力找规律. 我原本找的时候出了问题 暴力找出的从13及以上的答案就有问题了 因为13的12次方会溢出 那么该怎么做? 快速幂派上用场. 把前几个素数的答案找出来 ...
- Euler:欧拉函数&素数筛
一.欧拉函数 欧拉函数是小于x的整数中与x互质的数的个数,一般用φ(x)表示. 通式: 其中p1, p2……pn为x的所有质因数,x是不为0的整数. 比如x=12,拆成质因数为12=2*2*3, ...
- poj1284:欧拉函数+原根
何为原根?由费马小定理可知 如果a于p互质 则有a^(p-1)≡1(mod p)对于任意的a是不是一定要到p-1次幂才会出现上述情况呢?显然不是,当第一次出现a^k≡1(mod p)时, 记为ep(a ...
- Codeforces 1114F(欧拉函数、线段树)
AC通道 要点 欧拉函数对于素数有一些性质,考虑将输入数据唯一分解后进行素数下的处理. 对于素数\(p\)有:\(\phi(p^k)=p^{k-1}*(p-1)=p^k*\frac{p-1}{p}\) ...
随机推荐
- 开启Objective-C --- OC基础知识
一.Objective-C简述 Objective-C通常写作ObjC和较少用的Objective C或Obj-C,是扩充C的面向对象编程语言.Objective-C主要用于:编写iOS操作 ...
- 学习jax-ws(一)
1.生成文件时提示class not find ,需要加个cp .,这样就行了 E:\mylearn\learn_webservice\learnJax-ws\bin>wsgen -cp . w ...
- UML 中的用例图解析以及starUML详细介绍
UML中的用例(Use Case)概念分析及StarUML实例 在UML 中use case 似 乎最簡單的,用例建模的最主要功能就是用来表达系统的功能性需求或行为,依我的理解用例建模可分为用例图和用 ...
- 【BZOJ 2809】 [Apio2012]dispatching
Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级. ...
- UAT测试,PPT测试
UAT:user acceptable testing 用户验收测试 PPT:product produce test 产品生产验证
- Github的使用以及Git的简单入门 - 课程作业三
GitHub创建项目 登录GitHub,在个人主页创建项目(repository) 创建后会生成2个文件,README.md和.gitignore.如图 创建本地仓库 如果是第一次使用git的话,需要 ...
- 【转】oracle number与java中long、int的对应
Oracle数据库中number类型在hibernate的引用 1)如果不指定number的长度,或指定长度n>18 id number not null,转换为pojo类时,为java.mat ...
- WebService相关概念介绍
最近重新拾起WebService,之前用过Axis2开发过服务,但是非常具体的概念还不是很清楚,在此粗略总结一下. 本文重点研究以下几个问题: 1.WebService以及相关的概念介绍 ...
- 委托、事件和Lambda
一.委托 delegate1.在.Net平台下,委托类型用来定义和响应应用程序中的回调.事实上,.Net委托类型是一个类型安全的对象,指向可以以后调用的其他方法,.Net委托是内置支持多路广播和异步方 ...
- NYOJ-102 次方求模 AC 分类: NYOJ 2014-02-06 18:53 184人阅读 评论(0) 收藏
地址:http://acm.nyist.net/JudgeOnline/problem.php?pid=102 //a^b mod c=(a mod c)^b mod c很容易设计出一个基于二分的递归 ...