HMM隐马尔科夫模型 MATLAB 工具包对各种数据的处理

HMM 工具包下载地址:
工具包使用说明:
 
接下来简单叙述一下如何写data
1、data是一维数据、每一组训练样例序列长度一致。
O = 3;
Q = 2; 
prior0 = normalise(rand(Q,1)); 
transmat0 = mk_stochastic(rand(Q,Q));
obsmat0 = mk_stochastic(rand(Q,O));

%Now we sample nex=20 sequences of length T=10 each from this model, to use as training data.

T=10;
nex=20;
data = dhmm_sample(prior0, transmat0, obsmat0, nex, T);

%Here data is 20x10. Now we make a random guess as to what the parameters are,

prior1 = normalise(rand(Q,1)); 
transmat1 = mk_stochastic(rand(Q,Q));
obsmat1 = mk_stochastic(rand(Q,O));

%and improve our guess using 5 iterations of EM...

[LL, prior2, transmat2, obsmat2] = dhmm_em(data, prior1, transmat1, obsmat1, 'max_iter', 5);


loglik = dhmm_logprob(data, prior2, transmat2, obsmat2)
%loglik 即用来预测测试数据的相似程度 越大越相似 0为最大
2、data是多维数据、每一组训练样例序列长度一致。
%Let us generate nex=50 vector-valued sequences of length T=50; each vector has size O=2.

O = 2; 
T = 50; 
nex = 50; 
data = randn(O,T,nex);
%Now let use fit a mixture of M=2 Gaussians for each of the Q=2 states using K-means.
M = 2;
Q = 2; 
left_right = 0; 
 prior0 = normalise(rand(Q,1)); 
transmat0 = mk_stochastic(rand(Q,Q)); 
[mu0, Sigma0] = mixgauss_init(Q*M, reshape(data, [O T*nex]), cov_type);
 mu0 = reshape(mu0, [O Q M]); 
Sigma0 = reshape(Sigma0, [O O Q M]);
mixmat0 = mk_stochastic(rand(Q,M));


%Finally, let us improve these parameter estimates using EM.
[LL, prior1, transmat1, mu1, Sigma1, mixmat1] = mhmm_em(data, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', 2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
说明这里的数组格式是O*T*nex举个例子这个数组是怎么存的
 data0=[x,y,z];data0 是三维数据,供T*nex行,1~T行为nex=1的数据,T+1~2*T行为nex=2的数                %据,以此类推



 data = randn(O,T,nex);
 index=1;
  for k=1:nex
     for j=1:T
         data(:,j,k)=data0(index,:);
         index=index+1;
    end
end 
%按照上述这样将data0写入data即可
%新的数据查看与这个模型的相似程度,即分类
loglik = mhmm_logprob(data, prior, transmat, mu, Sigma, mixmat);
3、data是多维数据、并且每一组训练样例序列长度一致,即HMM如何处理长度不一致数据。
这种情况还是很常见的,例如采集一组连续语音信号,但每次采集得到的长度(帧数)不一致。
假如数据维度为O维,帧数为T(每一组肯能都不一致),NEX为训练数据数目。
步骤1、按照O*T存成NEX行cell类型数据(这里命名为cell_data),例如我的cell_data截图

我的单个数据为8维,供4组训练数据,每一组训练数据取得序列长度不一致。
步骤2、训练代码
    O = 8;%维度
    M = 2;
    Q = 3;
    train_num = 4;
    data =[];


    % initial guess of parameters
   cov_type = 'full';
    % initial guess of parameters
    prior0 = normalise(rand(Q,1));
    transmat0 = mk_stochastic(rand(Q,Q));
    for train_len = 1 : train_num
        data = [data(:, 1 : end), cell_data{train_len}];
    end
    
    [mu0, Sigma0] = mixgauss_init(Q*M, data, cov_type);
    mu0 = reshape(mu0, [O Q M]);
    Sigma0 = reshape(Sigma0, [O O Q M]);
    mixmat0 = mk_stochastic(rand(Q,M));
    [LL, HMM.prior, HMM.transmat, HMM.mu, HMM.Sigma, HMM.mixmat] = ...

HMM TOOL的更多相关文章

  1. hmm CDN检测

    # -*- coding:utf-8 -*- import sys import re from hmmlearn import hmm import numpy as np from sklearn ...

  2. 结巴分词3--基于汉字成词能力的HMM模型识别未登录词

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 1 算法简介 在 结巴分词2--基于前缀词典及动态规划实现分词 博 ...

  3. [免费了] SailingEase .NET Resources Tool (.NET 多语言资源编辑器)

    这是我2010年左右,写 Winform IDE (http://www.cnblogs.com/sheng_chao/p/4387249.html)项目时延伸出的一个小项目. 最初是以共享软件的形式 ...

  4. 一文搞懂HMM(隐马尔可夫模型)

    什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有 ...

  5. 【中文分词】隐马尔可夫模型HMM

    Nianwen Xue在<Chinese Word Segmentation as Character Tagging>中将中文分词视作为序列标注问题(sequence labeling ...

  6. jBPM4.4 no jBPM DB schema: no JBPM4_EXECUTION table. Run the create.jbpm.schema target first in the install tool.

    jBPM4.4 no jBPM DB schema: no JBPM4_EXECUTION table. Run the create.jbpm.schema target first in the ...

  7. mtk flash tool,Win7 On VirtualBox

    SP_Flash_Tool_exe_Windows_v5.1624.00.000 Win7 在 VirtualBox, 安裝 mtk flash tool, v5.1628 在燒錄時會 fail. v ...

  8. HMM基本原理及其实现(隐马尔科夫模型)

    HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态 ...

  9. 使用Microsoft Web Application Stress Tool对web进行压力测试

    Web压力测试是目前比较流行的话题,利用Web压力测试可以有效地测试一些Web服务器的运行状态和响应时间等等,对于Web服务器的承受力测试是个非常好的手法.Web 压力测试通常是利用一些工具,例如微软 ...

随机推荐

  1. ctrl+enter提交留言

    <!DOCTYPE html><html lang="zh-CN"><head> <meta charset="UTF-8&qu ...

  2. [css] 自适应布局 移动端自适应

    一.宽度自适应 三列布局左右固定.中间不固定或者两列布局,左边固定右边不固定 原文链接:http://www.cnblogs.com/2050/archive/2012/07/30/2614852.h ...

  3. 数据分析学习(zhuan)

    http://www.zhihu.com/question/22119753 http://www.zhihu.com/question/20757000 ********************** ...

  4. Spring MVC 基础注解之@RequestMapping、@Controller、(二)

    我现在学的是spring4.2 今天主要学习了Spring MVC注解 引入注解可以减少我们的代码量,优化我们的代码. @Controller:用于标识是处理器类: @RequestMapping:请 ...

  5. JavaScript设计模式与开发实践 - 单例模式

    引言 本文摘自<JavaScript设计模式与开发实践> 在传统开发工程师眼里,单例就是保证一个类只有一个实例,实现的方法一般是先判断实例存在与否,如果存在直接返回,如果不存在就创建了再返 ...

  6. sql中out与output

    --SQLQuery Create By Faywool         create proc Proc_OutPutTest--创建 @numA int,--numA为存储过程的参数 @numB  ...

  7. azure git 托管

    azure git上传部署步骤:(首次提交)cd 至本地代码路径git initgit add .git commit –m "initial commit"git remote ...

  8. vitamio videoView 用隐藏除videoview的控件,并旋转屏幕方向实现的全屏功能,出现的画面不能填充满videoview(画面不完整)

    使用vitamio 封装的播放器 当切换到全屏模式,有时候会出现播放的画面不是全屏的情况, 全屏时,画面只占左半部分并出现拉伸效果,还显示不全,等等其他情况 阅读分析源代码发现是getHolder() ...

  9. 20145218 《Java程序设计》第10周学习总结

    20145218 <Java程序设计>第10周学习总结 教材学习内容总结 网络编程 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据. 程序员所作的事情就是把数据发送到指定的位 ...

  10. js正则--验证6-12位至少包含数字、小写字母和大些字母中至少两种字符,

    var reg=/^((([a-z])+([0-9])+)|(([0-9])+([a-z])+)|(([A-Z])+([0-9])+)|(([0-9])+([A-Z])+)|(([a-z])+([A- ...