题目大意:指定一颗树上有3个操作:询问操作,询问a点和b点之间的路径上最长的那条边的长度;取反操作,将a点和b点之间的路径权值都取相反数;变化操作,把某条边的权值变成指定的值。
 #include <cstdio>
#include <iostream>
#include <cstring> using namespace std;
#define N 10010
#define ls o<<1
#define rs o<<1|1
#define define_m int m=(l+r)>>1
const int INF = ;
int first[N] , k;
struct Edge{
int x , y , next , w;
Edge(){}
Edge(int x , int y , int next , int w):x(x),y(y),next(next),w(w){}
}e[N<<]; void add_edge(int x ,int y , int w)
{
e[k] = Edge(x , y , first[x] , w);
first[x] = k++;
} int sz[N] , son[N] , dep[N] , fa[N] , num , id[N] , top[N];
void dfs(int u , int f , int d)
{
sz[u] = , fa[u] = f , son[u] = , dep[u] = d;
int maxn = ;
for(int i=first[u] ; ~i ; i=e[i].next){
int v = e[i].y;
if(v == f) continue;
dfs(v , u , d+);
sz[u] += sz[v];
if(maxn<sz[v]) maxn = sz[v] , son[u] = v;
}
} void dfs1(int u , int f , int head)
{
id[u] = ++num , top[u] = head;
if(son[u]) dfs1(son[u] , u , head);
for(int i=first[u] ; ~i ; i=e[i].next){
int v = e[i].y;
if(v == f || v==son[u]) continue;
dfs1(v , u , v);
}
} int mx[N<<] , mn[N<<] , neg[N<<] , val[N]; void push_down(int o)
{
if(neg[o]<){
neg[ls]*=neg[o] , neg[rs]*=neg[o];
int tmp;
tmp = mx[ls] , mx[ls] = -mn[ls] , mn[ls] = -tmp;
tmp = mx[rs] , mx[rs] = -mn[rs] , mn[rs] = -tmp;
neg[o] = ;
}
} void push_up(int o)
{
mx[o] = max(mx[ls] , mx[rs]);
mn[o] = min(mn[ls] , mn[rs]);
} void build(int o , int l , int r)
{
neg[o] = ;
if(l==r){
mx[o] = mn[o] = val[l];
return ;
}
define_m;
build(ls , l , m);
build(rs , m+ , r);
push_up(o);
} void change(int o , int l , int r , int p , int v)
{
if(l==r){
mx[o] = mn[o] = v;
return;
}
push_down(o);
define_m;
if(m>=p) change(ls , l , m , p , v);
else change(rs , m+ , r , p , v);
push_up(o);
} void update(int o , int l , int r , int s , int t)
{
if(l>=s && r<=t){
int tmp;
tmp = mx[o] , mx[o] = -mn[o] , mn[o] = -tmp;
neg[o] *= -;
return ;
}
push_down(o);
define_m;
if(m>=s) update(ls , l , m , s , t);
if(m<t) update(rs , m+ , r , s , t);
push_up(o);
} int query(int o , int l , int r , int s , int t)
{
if(l>=s && r<=t) return mx[o];
push_down(o);
define_m;
int ans = -INF;
if(m>=s) ans=max(ans , query(ls , l , m , s , t));
if(m<t) ans=max(ans , query(rs , m+ , r , s , t));
return ans;
}
int n , u , v , w;
char str[]; void negatePath(int u , int v)
{
int top1 = top[u] , top2 = top[v];
while(top1!=top2)
{
if(dep[top1]<dep[top2]){
swap(top1 , top2);
swap(u , v);
}
update( , , num , id[top1] , id[u]);
u = fa[top1];
top1 = top[u];
}
if(u!=v){
if(dep[u]<dep[v]) swap(u , v);
update( , , num , id[son[v]] , id[u]);
}
} int calPath(int u , int v)
{
int top1 = top[u] , top2 = top[v];
int ret = -INF;
while(top1!=top2){
if(dep[top1]<dep[top2]){
swap(top1 , top2);
swap(u , v);
}
ret = max(ret , query( , , num , id[top1] , id[u]));
u = fa[top1];
top1 = top[u];
}
if(u!=v){
if(dep[u]<dep[v]) swap(u , v);
ret = max(ret , query( , , num , id[son[v]] , id[u]));
}
return ret;
} int main()
{
// freopen("in.txt" , "r" , stdin);
int T;
scanf("%d" , &T);
while(T--)
{
scanf("%d" , &n);
memset(first , - , sizeof(first));
k=;
for(int i= ; i<n- ; i++){
scanf("%d%d%d" , &u ,&v , &w);
add_edge(u , v , w);
add_edge(v , u , w);
}
num = ;
dfs( , , );
dfs1( , , );
for(int i= ; i<n ; i++){
int j=i<< , x=e[j].x , y=e[j].y;
if(fa[x]!=y) val[id[y]] = e[j].w;
else val[id[x]] = e[j].w;
}
build( , , num);
while(scanf("%s" , str)){
if(str[] == 'D') break;
if(str[] == 'C'){
scanf("%d%d" , &u , &v);
u--;
int x = e[u*].x , y = e[u*].y , pos;
if(fa[x]!=y) pos = id[y];
else pos = id[x];
change( , , num , pos , v);
}
else if(str[] == 'N'){
scanf("%d%d" , &u , &v);
negatePath(u , v);
}
else{
scanf("%d%d" , &u , &v);
int ret = calPath(u , v);
printf("%d\n" , ret);
}
}
}
return ;
}

POJ 3237的更多相关文章

  1. HDU 3966 & POJ 3237 & HYSBZ 2243 树链剖分

    树链剖分是一个很固定的套路 一般用来解决树上两点之间的路径更改与查询 思想是将一棵树分成不想交的几条链 并且由于dfs的顺序性 给每条链上的点或边标的号必定是连着的 那么每两个点之间的路径都可以拆成几 ...

  2. poj 3237 Tree [LCA] (树链剖分)

    poj 3237 tree inline : 1. inline 定义的类的内联函数,函数的代码被放入符号表中,在使用时直接进行替换,(像宏一样展开),没有了调用的开销,效率也很高. 2. 很明显,类 ...

  3. poj 3237 Tree(树链拆分)

    题目链接:poj 3237 Tree 题目大意:给定一棵树,三种操作: CHANGE i v:将i节点权值变为v NEGATE a b:将ab路径上全部节点的权值变为相反数 QUERY a b:查询a ...

  4. HDU 3966 & POJ 3237 & HYSBZ 2243 & HRBUST 2064 树链剖分

    树链剖分是一个很固定的套路 一般用来解决树上两点之间的路径更改与查询 思想是将一棵树分成不想交的几条链 并且由于dfs的顺序性 给每条链上的点或边标的号必定是连着的 那么每两个点之间的路径都可以拆成几 ...

  5. cogs 1583. [POJ 3237] 树的维护 树链剖分套线段树

    1583. [POJ 3237] 树的维护 ★★★★   输入文件:maintaintree.in   输出文件:maintaintree.out   简单对比时间限制:5 s   内存限制:128 ...

  6. POJ 3237:Tree(树链剖分)

    http://poj.org/problem?id=3237 题意:树链剖分.操作有三种:改变一条边的边权,将 a 到 b 的每条边的边权都翻转(即 w[i] = -w[i]),询问 a 到 b 的最 ...

  7. poj 3237 Tree 树链剖分

    题目链接:http://poj.org/problem?id=3237 You are given a tree with N nodes. The tree’s nodes are numbered ...

  8. POJ 3237 Tree (树链剖分 路径剖分 线段树的lazy标记)

    题目链接:http://poj.org/problem?id=3237 一棵有边权的树,有3种操作. 树链剖分+线段树lazy标记.lazy为0表示没更新区间或者区间更新了2的倍数次,1表示为更新,每 ...

  9. ●POJ 3237 Tree

    题链: http://poj.org/problem?id=3237 题解: LCT 说一说如何完成询问操作就好了(把一条链的边权变成相反数的操作可以类比着来): 首先明确一下,我们把边权下放到点上. ...

  10. POJ 3237 树链剖分

    题目链接:http://poj.org/problem?id=3237 题意:给定一棵n个结点n-1条边的树. 每条边都是一个边权. 现在有4种操作 1:CHANGE I V:把(输入的)第i条边的边 ...

随机推荐

  1. oracle对象类型

    Oracle的对象类型 对象类型 在PL/SQL中,面向对象的程序设计师基于对象类型来完成的.对象类型是用户自定义的一种复合数据类型,它封装了数据结构和用于操纵这些数据结构的过程和函数. 数据库的对象 ...

  2. 推荐两篇Unity与Android交互的文章

    http://www.xuanyusong.com/archives/676 里面18,19介绍

  3. C++ Primer 第三章 标准库类型vector+迭代器iterator 运算

    1.vector: 标准库类型vector表示对象的集合,其中所有对象的类型都相同,集合中的每个对象都有一个与之对应的索引,索引用于访问对象.因为vector“容纳着”其他对象,所以它也常被称作容器( ...

  4. 可视化工具之 IGV 使用方法

    整合基因组浏览器(IGV)是一种高性能的可视化工具,用来交互式地探索大型综合基因组数据.它支持各种数据类型,包括array-based的和下一代测序的数据和基因注释. IGV这个工具很牛,发了NB: ...

  5. assert的用处

    ASSERT函数是用于调试中,也就是说在你的代码中当是Debug的时候它完成对参数的判断,如果是TRUE则什么都不做,如果是FALSE则弹出一个程序中断对话框提示程序出现错误.在Release版本中它 ...

  6. java 多线程1

    进程: 线程: 多线程: 假象:只是CPU在做快速的切换 多线程的好处: 1.解决了一个进程里面可以同时运行多个任务(执行路径) 2.提高资源利用率,而不是效率. 多线程的弊端: 1.降低了一个进程里 ...

  7. 有用的dede表单代码

    <form action="" class="demoform">                <table>             ...

  8. The Economist

      The turning point in the process of growing up is when you discover the core of strength within yo ...

  9. 近期十大优秀jQuery插件推荐

    当有限的开发知识限制了设计进展,你无法为自己插上创新的翅膀时,jQuery可以扩展你的视野.本文将推荐从jQuery网站的Plugin频道中推选出的近期十款优秀jQuery插件. 1.jQuery U ...

  10. python 电影下载链接爬虫

    V1.0 功能:从比较知名的几个电影下载网站爬取下载链接,并自动打印出来: 代码: # -*- coding: utf8 -*- from bs4 import BeautifulSoup impor ...