bzoj 2595 斯坦纳树
题目大意:
选定一些格子保证景点对应的格子通过这些格子连通,保证选定的所有格子对应的权值和最小
这是相当于理解为将所有点形成的最小生成树
这里点的个数很少,所以可以对每一个点进行状态压缩
f[st][i]表示连通性至少为st,且经过i点的最小距离
方程1.f[st][i] = Min{f[s][i] + f[st - s][i]}(s为st的子集)
方程2.f[st][i] = Min{f[st][j] + w(i,j)}(i,j之间有边相连)
那么可以看出来大的状态总是跟小的状态有关,那么总是先求出小的状态集合
利用spfa求解所有状态对应的点跑最短路对其他格点进行松弛
我到现在也不知道为什么这样写效率会高
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
typedef pair<int,int> pii;
#define N 11
const int MAXN=<<N;
const int INF = 0x3f3f3f3f;
int n , m ; struct Node{
int x , y , s;
Node(){}
Node(int x , int y , int s):x(x),y(y),s(s){}
};
Node pre[N][N][MAXN];//用于回溯找上一个节点 int w[N][N] , dp[N][N][MAXN] , dir[][]={{,},{,-},{,},{-,}};
bool vis[N][N] , flag[N][N];
queue<pii> que; bool ok(int x , int y){return x>=&&x<=n&&y>=&&y<=m;} void spfa(int state)
{
while(!que.empty()){
pii u = que.front();
que.pop();
int x = u.first , y = u.second;
vis[x][y] = false;
for(int i= ; i< ; i++){
int xx = x+dir[i][] , yy = y+dir[i][];
if(!ok(xx,yy)) continue;
if(dp[xx][yy][state]>dp[x][y][state]+w[xx][yy]){
dp[xx][yy][state]=dp[x][y][state]+w[xx][yy];
pre[xx][yy][state] = Node(x , y , state);
if(!vis[xx][yy]) que.push(make_pair(xx , yy));
}
}
}
} void huisu(int x , int y , int s)
{
flag[x][y] = true;
if(pre[x][y][s].s == ) return;
huisu(pre[x][y][s].x , pre[x][y][s].y , pre[x][y][s].s);
if(pre[x][y][s].x==x && pre[x][y][s].y==y) huisu(pre[x][y][s].x , pre[x][y][s].y , s-pre[x][y][s].s);
} void print()
{
for(int i= ; i<=n ; i++){
for(int j= ; j<=m ; j++)
if(!w[i][j]) printf("x");
else if(flag[i][j]) printf("o");
else printf("_");
puts("");
}
} int main()
{
// freopen("in.txt" , "r" , stdin);
while(~scanf("%d%d" , &n , &m))
{
int num = ;
memset(dp , 0x3f , sizeof(dp));
memset(pre , , sizeof(pre));
for(int i= ; i<=n ; i++){
for(int j= ; j<=m ; j++){
scanf("%d" , &w[i][j]);
if(!w[i][j]){
dp[i][j][<<num] = ;
num++;
}
}
}
int ALL_STATE = <<num;
for(int k= ; k<ALL_STATE ; k++){
for(int i= ; i<=n ; i++){
for(int j= ; j<=m ; j++){
for(int s=(k-)&k ; s ; s=(s-)&k){
int tmps = k-s;
if(dp[i][j][k]>dp[i][j][s]+dp[i][j][tmps]-w[i][j]){
dp[i][j][k] = dp[i][j][s]+dp[i][j][tmps]-w[i][j];
pre[i][j][k] = Node(i , j , s);
}
}
if(dp[i][j][k]<INF) que.push(make_pair(i , j)) , vis[i][j]=true;
}
}
spfa(k);
}
memset(flag , , sizeof(flag));
for(int i= ; i<=n ; i++)
for(int j= ; j<=m ; j++){
if(!w[i][j]){
cout<<dp[i][j][ALL_STATE-]<<endl;
huisu(i , j , ALL_STATE-);
print();
return ;
}
} }
return ;
}
bzoj 2595 斯坦纳树的更多相关文章
- BZOJ 2595 斯坦那树
很久以前就想做,后来弃坑了. 最近又在群里有人问了类似的问题,艾老师说是斯坦纳树(%%%) 就是状压DP,然后用Spfa对状态进行转移. #include <iostream> #incl ...
- bzoj 2595 [Wc2008]游览计划(斯坦纳树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2595 [题意] 给定N*M的长方形,选最少权值和的格子使得要求的K个点连通. [科普] ...
- 【BZOJ 2595】2595: [Wc2008]游览计划 (状压DP+spfa,斯坦纳树?)
2595: [Wc2008]游览计划 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1572 Solved: 7 ...
- BZOJ 2595: [Wc2008]游览计划 [DP 状压 斯坦纳树 spfa]【学习笔记】
传送门 题意:略 论文 <SPFA算法的优化及应用> http://www.cnblogs.com/lazycal/p/bzoj-2595.html 本题的核心就是求斯坦纳树: Stein ...
- BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树
[题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...
- BZOJ 4006 Luogu P3264 [JLOI2015]管道连接 (斯坦纳树、状压DP)
题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4006 (luogu)https://www.luogu.org/probl ...
- bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...
- bzoj 4006 管道连接 —— 斯坦纳树+状压DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4006 用斯坦纳树求出所有关键点的各种连通情况的代价,把这个作为状压(压的是集合选择情况)的初 ...
- BZOJ 3205 [Apio2013]机器人 ——斯坦纳树
腊鸡题目,实在卡不过去. (改了一下午) 就是裸的斯坦纳树的题目,一方面合并子集,另一方面SPFA迭代求解. 优化了许多地方,甚至基数排序都写了. 还是T到死,不打算改了,就这样吧 #include ...
随机推荐
- hdu 1081(最大子矩阵和)
题目很简单,就是个最大子矩阵和的裸题,看来算法课本的分析后也差不多会做了.利用最大子段和的O(n)算法,对矩阵的行(或列)进行 i和j的枚举,对于第 i到j行,把同一列的元素进行压缩,得到一整行的一维 ...
- mybatis动态sql中foreach标签的使用
foreach标签主要用于构建in条件,他可以在sql中对集合进行迭代.如下: <delete id="deleteBatch"> delete from user w ...
- 【转】Android设置虚线、圆角、渐变
Android虚线圆角渐变 有图又真相,先上图再说. 点击效果: 设置虚线: <?xml version="1.0" encoding="utf-8" ...
- vitamio 缓冲一部分时,loading还没消失,直接点击播放,loading未能消失
在videoView的start()中 添加loading消失语句,效果很好 ,也没有出现任何问题
- js封装,一个JS文件引用多个JS文件
(function() { //加载 varobj = {}; /** * 动态加载脚本函数 * @param url 要加载的脚本路径 * @param callback ...
- Working with Data » 使用Visual Studio开发ASP.NET Core MVC and Entity Framework Core初学者教程
原文地址:https://docs.asp.net/en/latest/data/ef-mvc/intro.html The Contoso University sample web applica ...
- flush tables 好危险啊
请看图 +----+------+-----------+------+------------+------+-------------------------+------------------ ...
- 复杂TableView在iOS上的性能优化
声明:本文翻译自<iOS performance optimization>,原文作者 Khang Vo.翻译本文纯属为了技术交流的目的,并不具有任何的商业性质,也不得利用本文内容进行商业 ...
- jmeter笔记4
软件测试中使用JMeter测试Web应用 JMeter作用领域 JMeter可以用于测试静态或者动态资源的性能(文件.Servlets.Perl脚本.java对象.数据库和查询.ftp服务器或者其他 ...
- 创建SSTP VPN,适应win7, 控制台导入证书
1. 按 视窗+r 打开运行,运行 mmc命令 2.打开控制台窗口 3.在默认界面 按 Ctrl+m 快捷键 打开添加单元 窗口,然后在其左侧列表双击 证书 项 4.在打开的证书管理单元 第一步中选择 ...