hive 面试题 转载
转自:http://blog.csdn.net/ningguixin/article/details/12852051
有一张很大的表:TRLOG
该表大概有2T左右
TRLOG:
CREATE TABLE TRLOG
(PLATFORM string,
USER_ID int,
CLICK_TIME string,
CLICK_URL string)
row format delimited
fields terminated by '\t';
数据:
PLATFORM USER_ID CLICK_TIME CLICK_URL
WEB 12332321 2013-03-21 13:48:31.324 /home/
WEB 12332321 2013-03-21 13:48:32.954 /selectcat/er/
WEB 12332321 2013-03-21 13:48:46.365 /er/viewad/12.html
WEB 12332321 2013-03-21 13:48:53.651 /er/viewad/13.html
WEB 12332321 2013-03-21 13:49:13.435 /er/viewad/24.html
WEB 12332321 2013-03-21 13:49:35.876 /selectcat/che/
WEB 12332321 2013-03-21 13:49:56.398 /che/viewad/93.html
WEB 12332321 2013-03-21 13:50:03.143 /che/viewad/10.html
WEB 12332321 2013-03-21 13:50:34.265 /home/
WAP 32483923 2013-03-21 23:58:41.123 /m/home/
WAP 32483923 2013-03-21 23:59:16.123 /m/selectcat/fang/
WAP 32483923 2013-03-21 23:59:45.123 /m/fang/33.html
WAP 32483923 2013-03-22 00:00:23.984 /m/fang/54.html
WAP 32483923 2013-03-22 00:00:54.043 /m/selectcat/er/
WAP 32483923 2013-03-22 00:01:16.576 /m/er/49.html
…… …… …… ……
需要把上述数据处理为如下结构的表ALLOG:
CREATE TABLE ALLOG
(PLATFORM string,
USER_ID int,
SEQ int,
FROM_URL string,
TO_URL string)
row format delimited
fields terminated by '\t';
整理后的数据结构:
PLATFORM USER_ID SEQ FROM_URL TO_URL
WEB 12332321 1 NULL /home/
WEB 12332321 2 /home/ /selectcat/er/
WEB 12332321 3 /selectcat/er/ /er/viewad/12.html
WEB 12332321 4 /er/viewad/12.html /er/viewad/13.html
WEB 12332321 5 /er/viewad/13.html /er/viewad/24.html
WEB 12332321 6 /er/viewad/24.html /selectcat/che/
WEB 12332321 7 /selectcat/che/ /che/viewad/93.html
WEB 12332321 8 /che/viewad/93.html /che/viewad/10.html
WEB 12332321 9 /che/viewad/10.html /home/
WAP 32483923 1 NULL /m/home/
WAP 32483923 2 /m/home/ /m/selectcat/fang/
WAP 32483923 3 /m/selectcat/fang/ /m/fang/33.html
WAP 32483923 4 /m/fang/33.html /m/fang/54.html
WAP 32483923 5 /m/fang/54.html /m/selectcat/er/
WAP 32483923 6 /m/selectcat/er/ /m/er/49.html
…… …… …… ……
PLATFORM和USER_ID还是代表平台和用户ID;SEQ字段代表用户按时间排序后的访问顺序,FROM_URL和TO_URL分别代表用户从哪一页跳转到哪一页。对于某个平台上某个用户的第一条访问记录,其FROM_URL是NULL(空值)。
面试官说需要用两种办法做出来:
1、实现一个能加速上述处理过程的Hive Generic UDF,并给出使用此UDF实现ETL过程的Hive SQL
2、实现基于纯Hive SQL的ETL过程,从TRLOG表生成ALLOG表;(结果是一套SQL)
答案:
1.
UDF
package org.apache.hadoop.hive.udf;
public class RowNumber extends org.apache.hadoop.hive.ql.exec.UDF {
private static int MAX_VALUE = 50;
private static String comparedColumn[] = new String[MAX_VALUE];
private static int rowNum = 1;
public int evaluate(Object... args) {
String columnValue[] = new String[args.length];
for (int i = 0; i < args.length; i++)
columnValue[i] = args[i].toString();
if (rowNum == 1)
{
for (int i = 0; i < columnValue.length; i++)
comparedColumn[i] = columnValue[i];
}
for (int i = 0; i < columnValue.length; i++)
{
if (!comparedColumn[i].equals(columnValue[i]))
{
for (int j = 0; j < columnValue.length; j++)
{
comparedColumn[j] = columnValue[j];
}
rowNum = 1;
return rowNum++;
}
}
return rowNum++;
}
public static void main(String[] args) {
RowNumber aRowNumber = new RowNumber();
System.out.println(aRowNumber.evaluate("12332321"));
System.out.println(aRowNumber.evaluate("12332321"));
System.out.println(aRowNumber.evaluate("12332321"));
System.out.println(aRowNumber.evaluate("12332321"));
System.out.println(aRowNumber.evaluate("12332321"));
}
}
INSERT OVERWRITE TABLE ALLOG
SELECT t1.platform,t1.user_id,RowNumber(t1.user_id)seq,t2.click_url FROM_URL,t1.click_url TO_URL FROM
(select *,RowNumber(user_id)seq from trlog)t1
LEFT OUTER JOIN
(select *,RowNumber(user_id)seq from trlog)t2
on t1.user_id = t2.user_id and t1.seq=t2.seq+1;
2.
INSERT OVERWRITE TABLE ALLOG
SELECT t1.platform,t1.user_id,t1.seq,t2.click_url FROM_URL,t1.click_url TO_URL FROM
(SELECT platform,user_id,click_time,click_url,count(1) seq FROM (SELECT a.*,b.click_time click_time1,b.click_url click_url2 FROM trlog a left outer join trlog b on a.user_id = b.user_id)t WHERE click_time>=click_time1 GROUP BY platform,user_id,click_time,click_url)t1
LEFT OUTER JOIN
(SELECT platform,user_id,click_time,click_url,count(1) seq FROM (SELECT a.*,b.click_time click_time1,b.click_url click_url2 FROM trlog a left outer join trlog b on a.user_id = b.user_id)t WHERE click_time>=click_time1 GROUP BY platform,user_id,click_time,click_url )t2
on t1.user_id = t2.user_id and t1.seq = t2.seq + 1;
使用到的知识点为:
left outer join 左表全部显示,右表只显示满足条件的
3、对于以上的文本处理 我们可以很快的联想到shell中awk的处理
利用awk 中数组的相关操作,方法如下
cat url.txt |awk -F\\t 'BEGIN{OFS="\t"}{a[$1]++;b[a[$1]]=$4;print a[$1],$1,$2,$3,b[a[$1]-1],$4}'
其中OFS为输出的字段的定界符,这里利用了2个数组,a和b
输出为:
1 WEB 12332321 2013-03-21 13:48:31.324 /home
2 WEB 12332321 2013-03-21 13:48:32.954 /home /selectcat/er
3 WEB 12332321 2013-03-21 13:48:46.365 /selectcat/er /er/viewad/12.html
4 WEB 12332321 2013-03-21 13:48:53.651 /er/viewad/12.html /er/viewad/13.html
5 WEB 12332321 2013-03-21 13:49:13.435 /er/viewad/13.html /er/viewad/24.html
6 WEB 12332321 2013-03-21 13:49:35.876 /er/viewad/24.html /selectcat/che/
7 WEB 12332321 2013-03-21 13:49:56.398 /selectcat/che/ /che/viewad/93.html
8 WEB 12332321 2013-03-21 13:50:03.143 /che/viewad/93.html /che/viewad/10.html
9 WEB 12332321 2013-03-21 13:50:34.265 /che/viewad/10.html /home/
1 WAP 32483923 2013-03-21 23:58:41.123 /m/home/
2 WAP 32483923 2013-03-21 23:59:16.123 /m/home/ /m/selectcat/fang/
3 WAP 32483923 2013-03-21 23:59:45.123 /m/selectcat/fang/ /m/fang/33.html
4 WAP 32483923 2013-03-22 00:00:23.984 /m/fang/33.html /m/fang/54.html
5 WAP 32483923 2013-03-22 00:00:54.043 /m/fang/54.html /m/selectcat/er/
6 WAP 32483923 2013-03-22 00:01:16.576 /m/selectcat/er/ /m/er/49.html
hive 面试题 转载的更多相关文章
- Hive 笔试题
Hive 笔试题 考试时间: 姓名:____________ 考试成绩:____________ 考试时长:180 分钟 注意事项: 1. 自主答题,不能参考任何除本试卷外的其它资料. 2. 总成绩共 ...
- Java面试题[转载]
目录 转载 简历篇 请自我介绍 请介绍项目 基础篇 基本功 面向对象的特征 final, finally, finalize 的区别 int 和 Integer 有什么区别 重载和重写的区别 抽象类和 ...
- hive面试题(免费拿走不谢)
Hive 最常见的几个面试题 1.hive 的使用, 内外部表的区别,分区作用, UDF 和 Hive 优化(1)hive 使用:仓库.工具(2)hive 内部表:加载数据到 hive 所在的 hdf ...
- hive面试题
1. Hive数据倾斜原因: key分布不均匀 业务数据本身的特性 SQL语句造成数据倾斜解决方法hive设置hive.map.aggr=true和hive.groupby.skewindata=tr ...
- 50 道 Java 线程面试题(转载自牛客网)
下面是 Java 线程相关的热门面试题,你可以用它来好好准备面试. 1) 什么是线程? 线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理 ...
- Hive记录-Hive介绍(转载)
1.Hive是什么? Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的 SQL 查询功能,将类 SQL 语句转换为 MapReduce 任务执 ...
- .net面试题[转载]
1.简述private.protected.public.internal修饰符的访问权限. private:私有成员,在类的内部才可以访问. protected:保护成员,该类内部和继承类中可以访问 ...
- 一道hive面试题:explode map字段
需要找到每个学生最好的课程和成绩,最差的课程和成绩,以及各科的平均分 文本数据如下: name scores张三 语文:,数学:,英语:,历史:,政治:,物理:,化学:,地理:,生物: 李四 语文:, ...
- 转:hive面试题
有一张很大的表:TRLOG该表大概有2T左右TRLOG:CREATE TABLE TRLOG(PLATFORM string,USER_ID int,CLICK_TIME string,CLICK_U ...
随机推荐
- J2ee 巴巴网站制作(一)
用户模块图:
- SQL Server ->> Msg 7411, Level 16, State 1, Line 1 -- Server 'XXXX' is not configured for RPC.
关于问题,有两个相关的服务器选项. exec sp_serveroption @server='CIA-SH-SVR-SIS', @optname='rpc', @optvalue='true' ex ...
- 常用加密算法的Java实现总结
常用加密算法的Java实现(一) ——单向加密算法MD5和SHA 1.Java的安全体系架构 1.1 Java的安全体系架构介绍 Java中为安全框架提供类和接口.JDK 安全 A ...
- !! 2.对十份论文和报告中的关于OpenCV和Android NDK开发的总结
http://hujiaweibujidao.github.io/blog/2013/11/18/android-ndk-and-opencv-development-3/ Android Ndk a ...
- python中的 @ 修饰符
今天学习廖老师的python教程,碰到了修饰符'@',不太了解,查看了下官方文档. 简单的整理下: @dec2 @dec1 def func(arg1, arg2, ...): pass 等价于 de ...
- CString和string
CString和string(一) 概述 string和CString均是字符串模板类,string为标准模板类(STL)定义的字符串类,已经纳入C++标准之中: CString(typedef CS ...
- iconv字符编码转换
转自 http://blog.csdn.net/langresser_king/article/details/7459367 iconv(http://www.gnu.org/software/li ...
- 【Todo】各种排序整理
今天面试别人,问到堆排序.发现自己都记不太清楚了. 堆排序 从小到大排序,要用到的是,最大堆. 过程是最大堆,堆顶的最大的元素,调换到数组最后,依次进行.最后达到从小到大的效果. 归并排序 可以看这个 ...
- linux下从源代码安装git
之所以有这样的需求,是因为部分预安装的git版本太低,很多功能没有并且安全性存在问题. 比如git submodule add xxx@host:yyy.git必须在父repo的root目录安装,而新 ...
- 浅谈 Scala 中下划线的用途
Scala 作为一门函数式编程语言,对习惯了指令式编程语言的同学来说,会不大习惯,这里除了思维方式之外,还有语法层面的,比如 underscore(下划线)就会出现在多种场合,令初学者相当疑惑,今天就 ...