Distance Queries
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 8638   Accepted: 3032
Case Time Limit: 1000MS

Description

Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible! 

Input

* Lines 1..1+M: Same format as "Navigation Nightmare"

* Line 2+M: A single integer, K. 1 <= K <= 10,000

* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.

Output

* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance. 

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6

Sample Output

13
3
36

Hint

Farms 2 and 6 are 20+3+13=36 apart. 

Source

 
lca
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#include <vector> using namespace std; const int MAX_N = ;
int N,M;
int first[MAX_N],Next[ * MAX_N],v[ * MAX_N];
int id[MAX_N],vs[ * MAX_N];
int dep[MAX_N * ],d[MAX_N * ][],qid[MAX_N * ][];
int Dis[MAX_N],w[MAX_N * ];
int n; void RMQ() {
for(int i = ; i <= n; ++i) {
d[i][] = dep[i];
qid[i][] = i;
} for(int j = ; ( << j) <= n; ++j) {
for(int i = ; i + ( << j) - <= n; ++i) {
if(d[i][j - ] > d[i + ( << (j - ))][j - ]) {
d[i][j] = d[i + ( << (j - ))][j - ];
qid[i][j] = qid[i + ( << (j - ))][j - ];
} else {
d[i][j] = d[i][j - ];
qid[i][j] = qid[i][j - ];
}
}
} } void add_edge(int id,int u) {
int e = first[u];
Next[id] = e;
first[u] = id;
} int query(int L,int R) {
int k = ;
while(( << (k + )) < (R - L + )) ++k;
return d[L][k] < d[R - ( << k) + ][k] ?
qid[L][k] : qid[R - ( << k) + ][k];
} void dfs(int u,int fa,int d,int dis,int &k) {
id[u] = k;
vs[k] = u;
dep[k++] = d;
Dis[u] = dis;
for(int e = first[u]; e != -; e = Next[e]) {
if(v[e] != fa) {
dfs(v[e],u,d + ,dis + w[e],k);
vs[k] = u;
dep[k++] = d;
}
}
} int main()
{
// freopen("sw.in","r",stdin);
scanf("%d%d",&N,&M);
n = * N - ; for(int i = ; i <= N; ++i) first[i] = -;
for(int i = ; i <= * M; i += ) {
int u;
char ch;
scanf("%d%d%d %c",&u,&v[i],&w[i],&ch);
//printf("%d %d %d\n",u,v[i],w[i]);
w[i + ] = w[i];
v[i + ] = u;
add_edge(i,u);
add_edge(i + ,v[i]);
} int k = ;
dfs(,-,,,k);
RMQ(); int Q;
scanf("%d",&Q);
for(int i = ; i <= Q; ++i) {
int a,b;
scanf("%d%d",&a,&b);
int p = vs[ query(min(id[a],id[b]),max(id[a],id[b])) ];
printf("%d\n",Dis[a] + Dis[b] - * Dis[p]);
} return ;
}

poj 1986的更多相关文章

  1. POJ 1986 Distance Queries(Tarjan离线法求LCA)

    Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 12846   Accepted: 4552 ...

  2. POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)

    POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...

  3. POJ.1986 Distance Queries ( LCA 倍增 )

    POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...

  4. POJ 1986 Distance Queries LCA两点距离树

    标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...

  5. poj 1986 Distance Queries LCA

    题目链接:http://poj.org/problem?id=1986 Farmer John's cows refused to run in his marathon since he chose ...

  6. POJ 1986 - Distance Queries - [LCA模板题][Tarjan-LCA算法]

    题目链接:http://poj.org/problem?id=1986 Description Farmer John's cows refused to run in his marathon si ...

  7. POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】

    任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total ...

  8. POJ 1986:Distance Queries(倍增求LCA)

    http://poj.org/problem?id=1986 题意:给出一棵n个点m条边的树,还有q个询问,求树上两点的距离. 思路:这次学了一下倍增算法求LCA.模板. dp[i][j]代表第i个点 ...

  9. poj 1986 Distance Queries(LCA:倍增/离线)

    计算树上的路径长度.input要去查poj 1984. 任意建一棵树,利用树形结构,将问题转化为u,v,lca(u,v)三个点到根的距离.输出d[u]+d[v]-2*d[lca(u,v)]. 倍增求解 ...

  10. POJ 1986:Distance Queries

    Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 18139   Accepted: 6248 ...

随机推荐

  1. java-脚本-编译-注解

    有注解没注解生成字节码一样 ,只对处理它的工具有用通过注解接口定义@interface 元注解(4个)@Target ANNOTATION_TYPE/PACKAGE/TYPE/METHOD/CONST ...

  2. spring事物的七种事物传播属性行为及五种隔离级别

    首先,说说什么事务(Transaction). 事务,就是一组操作数据库的动作集合.事务是现代数据库理论中的核心概念之一.如果一组处理步骤或者全部发生或者一步也不执行,我们称该组处理步骤为一个事务.当 ...

  3. C#巧用Excel模版变成把Table打印出来

    将一个做好的Excel模版,通过程序填上数据然后打印出来这个需求有两种方法一种是通过代码打开Excel模版然后填入数据然后再打印. 第二种方法就是我将要介绍的 1.将Excel设置好格式另存为HTML ...

  4. Oracle Rac crs无法启动

    OS:ORACLE LINUX 5.7 DB:11.2.0.3 RAC:YES 故障:1.两节点RAC,节点分别为linuxdb1.linuxdb2,其中节点linuxdb2服务器出现故障,无法启动2 ...

  5. Javascript中“==”与“===”的区别

    在Javascript中有"=="和"==="两种比较运行符,那么他们有什么区别呢? 一.对于string,number等基础类型,==和===是有区别的 1) ...

  6. hdu 1867 A + B for you again

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1867 A + B for you again Description Generally speaki ...

  7. Tutorial: Facebook analytics using Power BI Desktop

    In this tutorial you learn how to import and visualize data from Facebook. During the tutorial you'l ...

  8. 教你怎么安装MongoDB

    以下命令以root用户运行:#sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10#echo 'deb http://do ...

  9. 教你怎么安装RabbitMQ

    以下命令以root用户运行:#echo 'deb http://www.rabbitmq.com/debian/ testing main' >> /etc/apt/sources.lis ...

  10. Go返回参数命名

    Go语言中可以为返回值定义名称.代码实例: package main import "fmt" func add1(a int, b int) int { return a + b ...