链接

繁琐。

处理出来所有的线段,再判断相交。

对于正方形的已知对角顶点求剩余两顶点 (列出4个方程求解)

p[].x=(p[].x+p[].x+p[].y-p[].y)/;
p[].y=(p[].y+p[].y+p[].x-p[].x)/;
p[].x=(p[].x+p[].x-p[].y+p[].y)/;
p[].y=(p[].y+p[].y-p[].x+p[].x)/;
 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define N 600
#define LL long long
#define INF 0xfffffff
#define zero(x) (((x)>0?(x):-(x))<eps)
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
map<string,int>f;
vector<int>ed[];
int g;
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y) {}
} p[];
typedef point pointt;
pointt operator -(point a,point b)
{
return pointt(a.x-b.x,a.y-b.y);
}
struct line
{
pointt u,v;
int flag;
char c;
} li[N];
vector<line>dd[];
char s1[],s2[],s[];
int dcmp(double x)
{
if(fabs(x)<eps) return ;
return x<?-:;
}
point rotate(point a,double rad)
{
return point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
double dot(point a,point b)
{
return a.x*b.x+a.y*b.y;
}
double dis(point a)
{
return sqrt(dot(a,a));
}
double angle(point a,point b)
{
return acos(dot(a,b)/dis(a)/dis(b));
}
double cross(point a,point b)
{
return a.x*b.y-a.y*b.x;
} double xmult(point p1,point p2,point p0)
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
//判三点共线
int dots_inline(point p1,point p2,point p3)
{
return zero(xmult(p1,p2,p3));
} //判点是否在线段上,包括端点
int dot_online_in(point p,point l1,point l2)
{
return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;
} //判两点在线段同侧,点在线段上返回0 int same_side(point p1,point p2,point l1,point l2)
{
return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps;
} //判两线段相交,包括端点和部分重合 int intersect_in(point u1,point u2,point v1,point v2)
{
if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))
return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);
return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u2);
}
void init(int kk,char c)
{
int i;
int k = c-'A';
if(kk==)
{
for(i = ; i <= ; i+=)
{
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
}
p[].x=(p[].x+p[].x+p[].y-p[].y)/;
p[].y=(p[].y+p[].y+p[].x-p[].x)/;
p[].x=(p[].x+p[].x-p[].y+p[].y)/;
p[].y=(p[].y+p[].y-p[].x+p[].x)/;
p[] = p[];
for(i = ; i < ; i++)
{
li[++g].u = p[i];
li[g].v = p[i+];
dd[k].push_back(li[g]);
}
}
else if(kk==)
{
for(i = ; i <= ; i++)
{
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
}
point pp = point((p[].x+p[].x),(p[].y+p[].y));
p[] = point(pp.x-p[].x,pp.y-p[].y);
//printf("%.3f %.3f\n",p[4].x,p[4].y);
p[] = p[];
for(i = ; i <= ; i++)
{
li[++g].u = p[i];
li[g].v = p[i+];
li[g].c = c;
dd[k].push_back(li[g]);
}
}
else if(kk==)
{
for(i = ; i <= ; i++)
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
li[++g].u = p[];
li[g].v = p[];
li[g].c = c;
dd[k].push_back(li[g]);
}
else if(kk==)
{
for(i = ; i <= ; i++)
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
p[] = p[];
for(i = ; i <= ; i++)
{
li[++g].u = p[i];
li[g].v = p[i+];
li[g].c = c;
dd[k].push_back(li[g]);
}
}
else if(kk==)
{
int n;
scanf("%d",&n);
for(i = ; i <= n ; i++)
scanf(" (%lf,%lf)",&p[i].x,&p[i].y);
p[n+] = p[];
for(i = ; i <= n ; i++)
{
li[++g].u= p[i];
li[g].v = p[i+];
li[g].c = c;
dd[k].push_back(li[g]);
}
}
} int main()
{
f["square"] = ;
f["rectangle"] = ;
f["line"] = ;
f["triangle"] = ;
f["polygon"] = ;
int i,j,k;
while(scanf("%s",s1)!=EOF)
{
if(s1[]=='.') break;
if(s1[]=='-') continue;
for(i = ; i < ; i++)
{
ed[i].clear();
dd[i].clear();
}
g = ;
k=;
scanf("%s",s2);
s[++k] = s1[];
init(f[s2],s1[]);
while(scanf("%s",s1)!=EOF)
{
if(s1[]=='-') break;
//cout<<s1<<endl;
scanf("%s",s2);
s[++k] = s1[];
init(f[s2],s1[]);
}
//cout<<g<<endl;
sort(s+,s+k+);
for(i = ; i <= k; i++)
{
int u,v;
u = s[i]-'A';
//cout<<u<<" "<<dd[u].size()<<endl;
for(j = i+; j <= k ; j++)
{
v = s[j]-'A';
int flag = ;
for(int ii = ; ii < dd[u].size() ; ii++)
{
for(int jj = ; jj < dd[v].size() ; jj++)
{
if(intersect_in(dd[u][ii].u,dd[u][ii].v,dd[v][jj].u,dd[v][jj].v))
{ flag = ;
break;
}
// if(u==5&&v==22)
// {
// output(dd[u][ii].u);
// output(dd[u][ii].v);
// output(dd[v][jj].u);
// output(dd[v][jj].v);
// }
}
if(flag) break;
}
if(flag)
{
ed[u].push_back(v);
ed[v].push_back(u);
}
}
}
for(i = ; i <= k; i++)
{
int u = s[i]-'A';
if(ed[u].size()==)
printf("%c has no intersections\n",s[i]);
else
{ sort(ed[u].begin(),ed[u].end());
if(ed[u].size()==)
printf("%c intersects with %c\n",s[i],ed[u][]+'A');
else if(ed[u].size()==)
printf("%c intersects with %c and %c\n",s[i],ed[u][]+'A',ed[u][]+'A');
else
{
printf("%c intersects with ",s[i]);
for(j = ; j < ed[u].size()- ; j++)
printf("%c, ",ed[u][j]+'A');
printf("and %c\n",ed[u][j]+'A');
}
}
}
puts("");
}
return ;
}

poj3449Geometric Shapes的更多相关文章

  1. 十二、shapes

    1. The control points are attributes on the shape which are usually arrays of points. Control points ...

  2. Allegro Out Of Date Shapes原因及解决方法

    使用Allegro设计PCB板时,查看Status,经常会遇到out of date shapes的警告信息,具体如下: dynamic shape is still out of data or e ...

  3. Topology Shapes of OpenCascade BRep

    Topology Shapes of OpenCascade BRep eryar@163.com 摘要Abstract:通过对OpenCascade中的BRep数据的读写,理解边界表示法的概念及实现 ...

  4. graphviz - Node Shapes

    Node Shapes There are three main types of shapes : polygon-based, record-based and user-defined. The ...

  5. POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1243   Accepted: 524 D ...

  6. Geometric Shapes - POJ 3449(多边形相交)

    题目大意:给一些几何图形的编号,求出来这些图形都和那些相交.   分析:输入的正方形对角线上的两个点,所以需要求出来另外两个点,公式是: x2:=(x1+x3+y3-y1)/2; y2:=(y1+y3 ...

  7. 详细分析Orchard的Content、Drivers, Shapes and Placement 类型

    本文原文来自:http://skywalkersoftwaredevelopment.net/blog/a-closer-look-at-content-types-drivers-shapes-an ...

  8. POJ 3449 Geometric Shapes (求正方形的另外两点)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1470   Accepted: 622 D ...

  9. 解决gerber-Failed to Match All Shapes for PCB问题

    有效解决在Protel 99se导gerber时提示gerber-Failed to Match All Shapes for PCB出错问题如图 这种问题很好解决,打开这个窗口 操作方法如下图Emb ...

随机推荐

  1. ACM题目————一笔画问题

    描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来. 规定,所有的边都只能画一次,不能重复画. 输入 第一行只有一个正整数N(N< ...

  2. gets()和getchar()还有getch()的区别

    getch()和getchar()区别:1.getch(): 所在头文件:conio.h 函数用途:从控制台读取一个字符,但不显示在屏幕上例如: char ch;或int ch: getch();或c ...

  3. 使用VisualSVN建立SVN Server

    首先去官网下载安装包.http://subversion.apache.org/packages.html找到windows的,选择VisualSVN->VISUALSVN SERVER 双击开 ...

  4. hdu4940 Destroy Transportation system(2014多校联合第七场)

    题意很容易转化到这样的问题:在一个强连通的有向图D中是否存在这样的集合划分S + T = D,从S到T集合的边权大于从T到S集合的边权. 即D(i, j)  > B(j, i) + D(j, i ...

  5. Find them, Catch them

    Find them, Catch them Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 36488 Accepted: 111 ...

  6. Paratroopers

    Paratroopers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7881 Accepted: 2373 Descript ...

  7. Discuz! 6.x/7.x 全局变量防御绕过导致命令执行

    https://www.secpulse.com/archives/2338.html 模拟register_globals功能的代码,在GPC为off时会调用addslashes()函数处理变量值, ...

  8. Java 期末复习提纲

    Java 开发环境 Java 的特点 面向对象.跨平台.能把中小型程序写成大型程序 开发 Java 的流程 设计类 写代码 重构 Java 程序规范 Javadoc 风格注释 接口以 able 结尾 ...

  9. SharePoint自动化系列——创建MMS terms

    转载请注明出自天外归云的博客园:http://www.cnblogs.com/LanTianYou/ PowerShell脚本实现MMS group.termSet.terms的自动化创建: Add- ...

  10. Java中HashMap遍历的两种方式

    Java中HashMap遍历的两种方式 转]Java中HashMap遍历的两种方式原文地址: http://www.javaweb.cc/language/java/032291.shtml 第一种: ...