CUDA Thread Indexing
1D grid of 1D blocks __device__ int getGlobalIdx_1D_1D()
{
return blockIdx.x *blockDim.x + threadIdx.x;
} 1D grid of 2D blocks __device__ int getGlobalIdx_1D_2D()
{
return blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
} 1D grid of 3D blocks __device__ int getGlobalIdx_1D_3D()
{
return blockIdx.x * blockDim.x * blockDim.y * blockDim.z
+ threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x;
} {
return blockIdx.x * blockDim.x * blockDim.y * blockDim.z
+ threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x;
} 2D grid of 1D blocks __device__ int getGlobalIdx_2D_1D()
{
int blockId = blockIdx.y * gridDim.x + blockIdx.x;
int threadId = blockId * blockDim.x + threadIdx.x;
return threadId;
} {
int blockId = blockIdx.y * gridDim.x + blockIdx.x;
int threadId = blockId * blockDim.x + threadIdx.x;
return threadId;
} 2D grid of 2D blocks __device__ int getGlobalIdx_2D_2D()
{
int blockId = blockIdx.x + blockIdx.y * gridDim.x;
int threadId = blockId * (blockDim.x * blockDim.y) + (threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;
} 2D grid of 3D blocks __device__ int getGlobalIdx_2D_3D()
{
int blockId = blockIdx.x
+ blockIdx.y * gridDim.x;
int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)
+ (threadIdx.z * (blockDim.x * blockDim.y))
+ (threadIdx.y * blockDim.x)
+ threadIdx.x;
return threadId;
} 3D grid of 1D blocks __device__ int getGlobalIdx_3D_1D()
{
int blockId = blockIdx.x
+ blockIdx.y * gridDim.x
+ gridDim.x * gridDim.y * blockIdx.z;
int threadId = blockId * blockDim.x + threadIdx.x;
return threadId;
} 3D grid of 2D blocks __device__ int getGlobalIdx_3D_2D()
{
int blockId = blockIdx.x
+ blockIdx.y * gridDim.x
+ gridDim.x * gridDim.y * blockIdx.z;
int threadId = blockId * (blockDim.x * blockDim.y)
+ (threadIdx.y * blockDim.x)
+ threadIdx.x;
return threadId;
} 3D grid of 3D blocks __device__ int getGlobalIdx_3D_3D()
{
int blockId = blockIdx.x
+ blockIdx.y * gridDim.x
+ gridDim.x * gridDim.y * blockIdx.z;
int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)
+ (threadIdx.z * (blockDim.x * blockDim.y))
+ (threadIdx.y * blockDim.x)
+ threadIdx.x;
return threadId;
}
CUDA Thread Indexing的更多相关文章
- 计算机系列:CUDA 深入研究
Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...
- CUDA 并行编程简介
前言 并行就是让计算中相同或不同阶段的各个处理同时进行.目前有很多种实现并行的手段,如多核处理器,分布式系统等.本专题的文章将主要介绍使用 GPU 实现并行的方法.参考本专题文章前请务必搭建好 CUD ...
- ### CUDA
CUDA Learning. #@author: gr #@date: 2014-04-06 #@email: forgerui@gmail.com 1. Introduction CPU和GPU的区 ...
- CUDA 计算线程索引的一般公式
CUDA thread index: int blockId = blockIdx.z * (gridDim.x*gridDim.y) + blockIdx.y ...
- 第二篇:CUDA 并行编程简介
前言 并行就是让计算中相同或不同阶段的各个处理同时进行. 目前有很多种实现并行的手段,如多核处理器,分布式系统等,而本专题的文章将主要介绍使用 GPU 实现并行的方法. 参考本专题文章前请务必搭建好 ...
- CUDA 内存统一分析
CUDA 内存统一分析 关于CUDA 编程的基本知识,如何编写一个简单的程序,在内存中分配两个可供 GPU 访问的数字数组,然后将它们加在 GPU 上. 本文介绍内存统一,这使得分配和访问系统中任何处 ...
- Caffe 编译
Compilation Now that you have the prerequisites, edit your Makefile.config to change the paths for y ...
- 计算机组成原理 — GPU 图形处理器
目录 文章目录 目录 显卡 GPU GPU 与深度学习 GPU 与 CPU 体系结构的区别 GPU 显存与 CPU 主存的区别 GPU 与 CPU 之间的数据交互方式 GPU 的体系结构 GPU 的工 ...
- [源码解析] Pytorch 如何实现后向传播 (3)---- 引擎动态逻辑
[源码解析] Pytorch 如何实现后向传播 (3)---- 引擎动态逻辑 目录 [源码解析] Pytorch 如何实现后向传播 (3)---- 引擎动态逻辑 0x00 摘要 0x01 前文回顾 0 ...
随机推荐
- 解决:信息中插入avi格式的视频时,提示“unsupported video format”
[测试步骤]:新建信息,添加AVI格式的视频 [测试结果]:添加时弹出提示"unsupported video format" 该问题主要提现在手机彩信视频附件不支持该AVI格式的 ...
- My_Python的常用函数.
范围生成函数 class range(object) | range(stop) -> range object | range(start, stop[, step]) -> range ...
- asp.net ToString()格式汇总
C 货币 2.5.ToString("C") ¥2.50 D 十进制数 25.ToString("D5") 00025 E 科学型 25000.ToString ...
- LCA(倍增)
type arr=record v,nt:longint; end; ; lx=; ..maxn] of longint; eg:..maxn*] of arr; d:..maxn] of longi ...
- Qt5 添加右键菜单简单测试
1.在.h文件中包含相关头文件 #include <QMenu> #include <QContextMenuEvent> 2.在.h文件中定义动作对象 QAction *ed ...
- BLP模型
编号:1002时间:2016年3月29日16:24:33功能:多级安全BLP模型 URL:http://blog.csdn.net/longronglin/article/details/150033 ...
- 《你不知道的JavaScript》第一部分:作用域和闭包
第1章 作用域是什么 抛出问题:程序中的变量存储在哪里?程序需要时,如何找到它们? 设计 作用域 的目的:为了更好地存储和访问变量. 作用域:根据名称查找变量的一套规则,用于确定在何处以及如何查找变量 ...
- 《JS高程》事件类型学习笔记
事件类型: UI事件&焦点事件: 鼠标滚轮事件: 键盘与文本事件: 复合事件&变动事件: HTML5事件: 设备事件&触摸与手势事件:
- 一直纠结中的"底层模板"含义(借鉴)
无意间看到这个解释,推荐给哪些和我一样迷惑的人!
- Flume NG 简介及配置实战
Flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用.Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 clo ...