BZOJ 1488: [HNOI2009]图的同构 polay
题意:两个图AB同构:把A的顶点重新编号后与B一模一样。求n个顶点的图一共有多少个?(同构的算一种)
思路:边有n*(n-1)/2,这些边可以有可以没有,所以等同于边的颜色有两种。然后将n划分成循环节的和,n=L1+L2+……+Lm。现在需要把点置换映射到边置换。两个边在一个点循环节(大小L)时边置换循环节为L/2,否则为Gcd(L1,L2)。然后就是计算(L1,L2,……,Lm)这种划分的个数,设m个循环有t种数字,每种数字个数p1,p2,……,pt,那么划分个数为:n!/(L1*L2……*Lm*p1!*……*pt!)。
const int mod=997; int p[N];
int n;
int f[N][2],cnt; void init()
{
p[0]=1;
int i;
for(i=1;i<N;i++) p[i]=p[i-1]*i%mod;
} int ans; void cal()
{
i64 x=0,i,j;
FOR0(i,cnt)
{
x+=f[i][0]/2*f[i][1]+(f[i][1]-1)*f[i][1]/2*f[i][0];
for(j=i+1;j<cnt;j++) x+=f[i][1]*f[j][1]*Gcd(f[i][0],f[j][0]);
}
i64 pp=1;
FOR0(i,cnt) pp=pp*myPow(f[i][0],f[i][1],mod)%mod*p[f[i][1]]%mod;
pp=p[n]*gcdReverse(pp,mod)%mod; ans+=myPow(2,x,mod)*pp%mod;
ans%=mod;
} void DFS(int t,int re)
{
if(re==0)
{
cal();
return;
}
if(t>re) return;
DFS(t+1,re);
int i;
for(i=1;i*t<=re;i++)
{
f[cnt][0]=t;
f[cnt++][1]=i;
DFS(t+1,re-i*t);
cnt--;
}
} int main()
{
init();
RD(n);
DFS(1,n);
ans=ans*gcdReverse(p[n],mod)%mod;
PR(ans);
}
BZOJ 1488: [HNOI2009]图的同构 polay的更多相关文章
- BZOJ 1488: [HNOI2009]图的同构 [Polya]
完全图中选出不同构的简单图有多少个 上题简化版,只有两种颜色....直接copy就行了 太诡异了,刚才电脑上多了一个不动的鼠标指针,然后打开显卡管理界面就没了 #include<iostream ...
- bzoj 1488: [HNOI2009]图的同构
Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...
- bzoj 1488: [HNOI2009]图的同构【polya定理+dfs】
把连边和不连边看成黑白染色,然后就变成了 https://www.cnblogs.com/lokiii/p/10055629.html 这篇讲得好!https://blog.csdn.net/wzq_ ...
- bzoj1488[HNOI2009]图的同构
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488 1488: [HNOI2009]图的同构 Time Limit: 10 Sec M ...
- 【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)
[BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对 ...
- [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)
[BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...
- bzoj1488 [HNOI2009]图的同构 Burnside 引理
题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...
- BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)
题目链接 (Luogu) https://www.luogu.org/problem/P4727 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.ph ...
- bzoj 1483 [HNOI2009]梦幻布丁(链表+启发式合并)
1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1818 Solved: 761[Submit][Status ...
随机推荐
- Html基础知识讲解
Html基础知识讲解 <title>淄博汉企</title> </head> <body bgcolor="#66FFCC" topmar ...
- ANT命令总结(转载)
1 Ant是什么? Apache Ant 是一个基于 Java的生成工具.生成工具在软件开发中用来将源代码和其他输入文件转换为可执行文件的形式(也有可能转换为可安装的产品映像形式).随着应用程序的生成 ...
- NOIP201208同余方程
NOIP201208同余方程 描述 求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解. 格式 输入格式 输入只有一行,包含两个正整数a, b,用一个空格隔开. 输出格式 输出只有一行,包含 ...
- TVideoGrabber如何并行处理多摄像头
大家都知道 TVideoGrabber是一款支持包括C#..NET.VB.NET.C++.Delphi.C++Builder和ActiveX平台在内的视频处理控件,可以捕捉视频,也可以作为多媒体播放器 ...
- Mongodb 笔记07 分片、配置分片、选择片键、分片管理
分片 1. 分片(sharding)是指将数据拆分,将其分散存放在不同的机器上的过程.有时也用分区(partitioning)来表示这个概念.将数据分散到不同的机器上,不需要功能强大的大型计算机就可以 ...
- Android的init过程(二):初始化语言(init.rc)解析【转】
转自:http://www.cnblogs.com/nokiaguy/p/3164799.html Android的init过程(一) 本文使用的软件版本 Android:4.2.2 Linux内核: ...
- array DEMO
[xiluhua@vm-xiluhua][~]$ declare -a array #申明数组 [xiluhua@vm-xiluhua][~]$ array=("a" " ...
- Hibernate,JPA注解@OneToMany_Map
用例代码如下: 数据库DDL语句 1,CAT表 create table CAT ( id VARCHAR2(32 CHAR) not null, create_time TIMESTAMP(6), ...
- PHP操作Memcache基本函数的方法
Memcache基本函数. Memcache ― Memcache类 Memcache::add ― 增加一个条目到缓存服务器 Memcache::addServer ― 向连接池中添加一个memca ...
- hdwiki 编码规范
编码规范 命名规范 1.1.主要的目录 control 里面是控制类 ,前台命名为something.php,则后台对应的是admin_+前台名称,名称应选有意义的英文单词,例如 前台 ...