题目

You are given an array with n integers a1, a2, ..., an, and q queries to answer.

Each query consists of four integers l1, r1, l2 and r2. Your task is to count the number of pairs of indices (i, j) satisfying the following conditions:

ai = aj

l1 ≤ i ≤ r1

l2 ≤ j ≤ r2

Input

The first line of the input contains an integer n (1 ≤ n ≤ 50 000) — the size of the given array.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n).

The third line contains an integer q (1 ≤ q ≤ 50 000) — the number of queries.

Each of the next q lines contains four integers l1, r1, l2, r2 (1 ≤ l1 ≤ r1 ≤ n, 1 ≤ l2 ≤ r2 ≤ n), describing one query.

Output

For each query count the number of sought pairs of indices (i, j) and print it in a separate line.

Examples

Input

7

1 5 2 1 7 2 2

8

1 3 4 5

2 3 5 7

1 4 3 7

2 6 4 7

1 6 2 5

3 3 6 7

4 5 1 4

2 3 4 5

Output

1

2

5

6

6

2

2

0

题目:

您将获得一个包含n个整数a1,a2,...,an和q查询的数组。

每个查询由四个整数l1,r1,l2和r2组成。您的任务是计算满足以下条件的索引对(i,j)的数量:

$ a_i = a_j $

L1 ≤ i ≤ R1

L2 ≤ j ≤ R2

输入

输入的第一行包含一个整数n(1≤N≤50 000) -给定阵列的大小。

第二行包含n个整数a1,a2,...,a(1≤ai≤n)。

第三行包含一个整数q(1≤q≤50000) - 查询数。

接下来的q行中的每一行包含四个整数l1,r1,l2,r2(1≤l1≤r1≤n,1≤l2≤r2≤n),描述一个查询。

输出

对于每个查询计数所寻求的索引对(i,j)的数量,并将其打印在单独的行中。

示例输入

7
1 5 2 1 7 2 2
8
1 3 4 5
2 3 5 7
1 4 3 7
2 6 4 7
1 6 2 5
3 3 6 7
4 5 1 4
2 3 4 5

示例输出

1
2
5
6
6
2
2
0

仔细观察题目我们不难发现这题我们需要维护两个区间内元素的出现次数

嗯?这不是裸裸的莫队吗?等等,两个\(50000\)的区间,我不敲时谁敲时?

这谁做得出啊??干脆维护一个区间算了,暴力枚举第二个区间算了!!

于是某年某月某日某蒟蒻以2000毫秒的好成绩卡了过去:

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define db double
#define inf 0x7fffffff
#define rg register int using namespace std; struct su{
int l,r,ll,rr,t;
}k[50001]; long long now;
int z[50001];
int s[50001];
int tot[50001];
int tot2[50001];
long long ans[50001];
int n,m,q,f,l=1,r,ll=1,rr; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} inline bool cmp(su x,su y){
return z[x.l]==z[y.l]?x.r<y.r:x.l<y.l;
} inline void add(int x,int y){
now-=(long long)tot2[x]*tot[x];
tot[x]+=y;
now+=(long long)tot2[x]*tot[x];
} inline void add2(int x,int y){
now-=(long long)tot[x]*tot2[x];
tot2[x]+=y;
now+=(long long)tot[x]*tot2[x];
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr();
f=sqrt(n-1)+1;
for(rg i=1;i<=n;++i) s[i]=qr();
for(rg i=1,j=1;i<=n;++i)
z[i]=i%f==0?j++:j;
m=qr();
for(rg i=1;i<=m;++i){
k[i].l=qr();
k[i].r=qr();
k[i].ll=qr();
k[i].rr=qr();
k[i].t=i;
}
sort(k+1,k+m+1,cmp);
for(rg i=1;i<=m;++i){
while(l<k[i].l)add(s[l],-1),++l;
while(k[i].l<l)add(s[l-1],1),--l;
while(r<k[i].r)add(s[r+1],1),++r;
while(k[i].r<r)add(s[r],-1),--r;
while(ll<k[i].ll)add2(s[ll],-1),++ll;
while(k[i].ll<ll)add2(s[ll-1],1),--ll;
while(rr<k[i].rr)add2(s[rr+1],1),++rr;
while(k[i].rr<rr)add2(s[rr],-1),--rr;
ans[k[i].t]=now;
}
for(rg i=1;i<=m;++i)
printf("%lld\n",ans[i]);
return 0;
}

Strange Queries(莫队)的更多相关文章

  1. CFGym101138D Strange Queries 莫队/分块

    正解:莫队/分块 解题报告: 传送门 ummm这题耗了我一天差不多然后我到现在还没做完:D 而同机房的大佬用了一个小时没有就切了?大概这就是大佬和弱鸡的差距趴QAQ 然后只是大概写下思想好了因为代码我 ...

  2. XOR Queries(莫队+trie)

    题目链接: XOR Queries 给出一个长度为nn的数组CC,回答mm个形式为(L, R, A, B)(L,R,A,B)的询问,含义为存在多少个不同的数组下标k \in [L, R]k∈[L,R] ...

  3. Sona && Little Elephant and Array && Little Elephant and Array && D-query && Powerful array && Fast Queries (莫队)

    vjudge上莫队专题 真的是要吐槽自己(自己的莫队手残写了2个bug) s=sqrt(n) 是元素的个数而不是询问的个数(之所以是sqrt(n)使得左端点每个块左端点的范围嘴都是sqrt(n)) 在 ...

  4. CodeForces 375D Tree and Queries 莫队||DFS序

    Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...

  5. cf375D. Tree and Queries(莫队)

    题意 题目链接 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. Sol 想到了主席树和启发式 ...

  6. [Codeforces375D]Tree and Queries(莫队算法)

    题意:给定一棵树,每个节点有颜色,对于每个询问(u,k)询问以u为根节点的子树下有多少种颜色出现次数>=k 因为是子树,跟dfs序有关,转化为一段区间,可以用莫队算法求解 直接用一个数组统计出现 ...

  7. Gym101138D Strange Queries/BZOJ5016 SNOI2017 一个简单的询问 莫队、前缀和、容斥

    传送门--Gym 传送门--BZOJ THUWC2019D1T1撞题可还行 以前有些人做过还问过我,但是我没有珍惜,直到进入考场才追悔莫及-- 设\(que_{i,j}\)表示询问\((1,i,1,j ...

  8. LightOJ 1188 Fast Queries(简单莫队)

    1188 - Fast Queries    PDF (English) Statistics Forum Time Limit: 3 second(s) Memory Limit: 64 MB Gi ...

  9. CodeForces 376F Tree and Queries(假·树上莫队)

    You have a rooted tree consisting of n vertices. Each vertex of the tree has some color. We will ass ...

随机推荐

  1. PAT 1001. A+B Format 解题

    GitHub PDF 1001. A+B Format (20) Calculate a + b and output the sum in standard format -- that is, t ...

  2. Daily Scrum - 12/07

    Meeting Minutes 确认基本完成了UI组件的基本功能的动画实现: 准备开始实行UI组件的合并: 讨论了长期计划算法的难点,以及简单版本的实现方案. 督促大家更新TFS: Burndown ...

  3. 团队作业(五)-笔记app top5

    在互联网快速发展的情况下,各个行业的软件层出不穷,五花八门.各个行业都有相当多的软件介入其中,在如此多的软件之中,便有了相当激烈的竞争角逐.今天我们十五万的总冠军就着笔记APP行业中位列top 5的软 ...

  4. DHCP介绍

    DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)是一个局域网的网络协议,使用UDP协议工作, 主要有两个用途:给内部网络或网络服务供应商自动分配IP ...

  5. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...

  6. GS 服务器端开启webservice 远程调试的方法

    1. 修改 安装目录下 web.config的文件. 一般目录为: C:\Program Files\GenerSoft\bscw_local\web.config 为了保证安全想把文件备份一下. 2 ...

  7. python自动化之excel

    import openpyxl wb=openpyxl.load_workbook(r'C:\Users\Administrator\Desktop\sl.xlsx') type(wb) wb.get ...

  8. MT【82】凸函数

    评:对于(3)几何上来看要满足性质$P$图像来看必须下凸.这样区间中点$x=2$处不可能为最大.(4)的形式让我想起在证明算术几何平均不等式时历史上著名的柯西反向归纳证明:

  9. MT【98】三元对称不等式

    评:这是一道浙江省省赛题,这里利用对称性,设$x\le y\le z$从而解决了问题.值得注意的是此处三元轮换对称正好也是完全对称,但如果变成一般的$n\ge4$元对称问题时,就不能设大小关系.事实上 ...

  10. 【题解】 [HAOI2016]食物链 (拓扑排序)

    懒得复制,直接贴链接吧 Solution: 水题一道,注意单独一个点的不算在食物链中,也就是\(in[i]==0\) \(out[i]==0\)的点就不计算 Code: //It is coded b ...