UVa 11077 Find the Permutations (计数DP)
题意:给定 n 和 m,问你在 1 ~ n 的所有排列中,有多少个排列满足至少要交换 m 次才能变成 1 2 3 ... n。
析:首先,先考虑一下,某个排列,要变成 1 2 3 .. n,最少要交换几次,这个问题,我们可以把这个排列拆成几个循环,很明显在每个循环中,假设循环长度是 n ,那么至少要交换 n-1 次才能完成,如果不理解的,可以自己举个例子看看,有这个条件,那么就好做了,dp[i][j] 表示 1 ~ i 的排列中至少要交换 j 次才能变成 1 2 3 .. i,dp[i][j] = dp[i-1][j] + (i-1) * dp[i-1][j-1],解释一下这个方程,dp[i-1][j] ,就是直接把 i 放到第 i 个位置,不用交换,正好就是dp[i-1][j],(i-1) * dp[i-1][j-1],这个意思就是对,对于每个排列,我们可以把 i 放到前面的任何循环中,也就是可以把 i 和 前面 1 ~ i-1 上的数进行交换,正好某个循环长度多 1,其他的不变,所以就需要 j 次才能完成。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
//#define all 1,n,1
#define FOR(i,n,x) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.in", "r", stdin)
#define freopenw freopen("out.out", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 20 + 10;
const int maxm = 1e6 + 2;
const LL mod = 1000000007;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} LL dp[maxn][maxn]; int main(){
dp[1][0] = 1;
for(int i = 2; i < 22; ++i)
for(int j = 0; j < i; ++j)
dp[i][j] = dp[i-1][j] + (j ? dp[i-1][j-1] * (i-1) : 0);
while(scanf("%d %d", &n, &m) == 2 && n + m) printf("%llu\n", dp[n][m]);
return 0;
}
UVa 11077 Find the Permutations (计数DP)的更多相关文章
- Uva 11077 Find the Permutations [置换群 DP]
题意: 给定$n$和$k$,问有多少排列交换$k$次能变成升序 $n \le 21$ $uva$貌似挂掉了$vjudge$上一直排队 从某个排列到$1,2,...,n$和从$1,2,...,n$到某个 ...
- UVA 11077 - Find the Permutations(递推)
UVA 11077 - Find the Permutations option=com_onlinejudge&Itemid=8&page=show_problem&cate ...
- UVA 11077 Find the Permutations 递推置换
Find the Permutations Sorting is one of the most used operations in real ...
- UVA - 11077 Find the Permutations (置换)
Sorting is one of the most usedoperations in real life, where Computer Science comes into act. It is ...
- UVa 11077 Find the Permutations(置换+递推)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35431 [思路] 置换+递推 将一个排列看作一个置换,分解为k个循 ...
- UVA 10564 计数DP
也是经典的计数DP题,想练练手,故意不写记忆化搜索,改成递推,还是成功了嘞...不过很遗憾一开始WA了,原来是因为判断结束条件写个 n或s为0,应该要一起为0的,搞的我以为自己递推写挫了,又改了一下, ...
- HDU5800 To My Girlfriend 背包计数dp
分析:首先定义状态dp[i][j][s1][s2]代表前i个物品中,选若干个物品,总价值为j 其中s1个物品时必选,s2物品必不选的方案数 那么转移的时候可以考虑,第i个物品是可选可可不选的 dp[i ...
- CodeForces 176B Word Cut (计数DP)
Word Cut Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Submit St ...
- UVA 10163 Storage Keepers(两次DP)
UVA 10163 Storage Keepers(两次DP) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&Ite ...
随机推荐
- iOS - 抖音效果
抖音的转场动画—iOS https://www.jianshu.com/p/29b0165de712 抖音的上下滑实现—iOS https://www.jianshu.com/p/e8799510c7 ...
- idea工程中web.xml报错Servlet should have a mapping
搭建ssm工程过程中web.xml报错:Servlet should have a mapping ....但是mapping已经配置好了...如下图: 搜索无果,后来发现是工程的web.xml位置配 ...
- golang xml和json的解析与生成
golang中解析xml时我们通常会创建与之对应的结构体,一层层嵌套,完成复杂的xml解析. package main; import ( "encoding/xml" " ...
- 数据库以及pymysql
1.pymysql模块操作数据库详细 import pymysql # user = 'chun' # psw = conn = pymysql.connect(host='localhost',us ...
- centos7更换镜像源
更换软件源 由于国外的软件源在yum 安装时比较慢,更换为国内的源,以阿里的源的更换方式 下载wgetyum install wget -y echo 备份当前的yum源mv /etc/yum.rep ...
- springMvc入门--初识springMvc
springMvc是什么 springmvc是表现层的框架,是一个spring的表现层组件.是整个spring框架的一部分,但是也可以不使用springmvc.跟struts2框架功能类似.其中的mv ...
- Eigen解线性方程组
一. 矩阵分解: 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解.满秩分解.QR分解.Jordan分解和SVD(奇异值)分解等,常见 ...
- Hibbernate详解一
这里先做一个简单的入门,后面有详解 记住图解原理: 这里只是没有整合spring等项目使用的hibernate的使用详解. 一.Hibernate简介 1.Hibernate在开发中所处的位置 2.O ...
- hdu 2444(二分图) The Accomodation of Students
http://acm.hdu.edu.cn/showproblem.php?pid=2444 大意是给定n个学生,他们之间可能互相认识,首先判断能不能将这些学生分为两组,使组内学生不认识: 现想将学生 ...
- hdu 1698+poj 3468 (线段树 区间更新)
http://acm.hdu.edu.cn/showproblem.php?pid=1698 这个题意翻译起来有点猥琐啊,还是和谐一点吧 和涂颜色差不多,区间初始都为1,然后操作都是将x到y改为z,注 ...