OpenCV教程(48) 特征值匹配
OpenCV中通过下面的代码,可以匹配两幅的图像的特征值。
// Read input images
cv::Mat image1= cv::imread("../church01.jpg",0);
cv::Mat image2= cv::imread("../church02.jpg",0);
if (!image1.data || !image2.data)
return 0;
// Display the images
cv::namedWindow("Right Image");
cv::imshow("Right Image",image1);
cv::namedWindow("Left Image");
cv::imshow("Left Image",image2);
// vector of keypoints
std::vector<cv::KeyPoint> keypoints1;
std::vector<cv::KeyPoint> keypoints2;
// Construction of the SURF feature detector
cv::SurfFeatureDetector surf(3000);
// Detection of the SURF features
surf.detect(image1,keypoints1);
surf.detect(image2,keypoints2);
std::cout << "Number of SURF points (1): " << keypoints1.size() << std::endl;
std::cout << "Number of SURF points (2): " << keypoints2.size() << std::endl;
// Draw the kepoints
cv::Mat imageKP;
cv::drawKeypoints(image1,keypoints1,imageKP,cv::Scalar(255,255,255),cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
cv::namedWindow("Right SURF Features");
cv::imshow("Right SURF Features",imageKP);
cv::drawKeypoints(image2,keypoints2,imageKP,cv::Scalar(255,255,255),cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
cv::namedWindow("Left SURF Features");
cv::imshow("Left SURF Features",imageKP);
// Construction of the SURF descriptor extractor
cv::SurfDescriptorExtractor surfDesc;
// Extraction of the SURF descriptors
cv::Mat descriptors1, descriptors2;
surfDesc.compute(image1,keypoints1,descriptors1);
surfDesc.compute(image2,keypoints2,descriptors2);
std::cout << "descriptor matrix size: " << descriptors1.rows << " by " << descriptors1.cols << std::endl;
// Construction of the matcher
cv::BruteForceMatcher<cv::L2<float>> matcher;
// Match the two image descriptors
std::vector<cv::DMatch> matches;
matcher.match(descriptors1,descriptors2, matches);
std::cout << "Number of matched points: " << matches.size() << std::endl;
std::nth_element(matches.begin(), // initial position
matches.begin()+24, // position of the sorted element
matches.end()); // end position
// remove all elements after the 25th
matches.erase(matches.begin()+25, matches.end());
cv::Mat imageMatches;
cv::drawMatches(image1,keypoints1, // 1st image and its keypoints
image2,keypoints2, // 2nd image and its keypoints
matches, // the matches
imageMatches, // the image produced
cv::Scalar(255,255,255)); // color of the lines
cv::namedWindow("Matches");
cv::imshow("Matches",imageMatches);
程序执行后匹配图如下: 
程序代码:工程FirstOpenCV51
OpenCV教程(48) 特征值匹配的更多相关文章
- XCode6.3上使用opencv教程(MacOSX 10.10)
OpenCV 是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Pyth ...
- 使用Opencv中matchTemplate模板匹配方法跟踪移动目标
模板匹配是一种在图像中定位目标的方法,通过把输入图像在实际图像上逐像素点滑动,计算特征相似性,以此来判断当前滑块图像所在位置是目标图像的概率. 在Opencv中,模板匹配定义了6种相似性对比方式: C ...
- Directx11教程(48) depth/stencil buffer的作用
原文:Directx11教程(48) depth/stencil buffer的作用 在D3D11中,有depth/stencil buffer,它们和framebuffer相对应,如下图所 ...
- OpenCV教程(43) harris角的检测(1)
计算机视觉中,我们经常要匹配两幅图像.匹配的的方式就是通过比较两幅图像中的公共特征,比如边,角,以及图像块(blob)等,来对两幅图像进行匹配. 相对于边,角更适合描述图像特征, ...
- OpenCV——SIFT特征检测与匹配
SIFT特征和SURF特征比较 比较项目 SIFT SURF 尺度空间极值检测 使用高斯滤波器,根据不同尺度的高斯差(DOG)图像寻找局部极值 使用方形滤波器,利用海森矩阵的行列式值检测极值,并利用积 ...
- 使用OpenCV&&C++进行模板匹配.
一:课程介绍 1.1:学习目标 学会用imread载入图像,和imshow输出图像. 用nameWindow创建窗口,用createTrackbar加入滚动条和其回调函数的写法. 熟悉OpenCV函数 ...
- 【麦子学院】OpenCV教程函数总结
个自带样例. parter 1: No1. adaptiveskindetector.cpp 利用HSV空间的色调信息的皮肤检測,背景不能有太多与肤色相似的颜色.效果不是特别好. No2. bagof ...
- OpenCV特征点检测匹配图像-----添加包围盒
最终效果: 其实这个小功能非常有用,甚至加上只有给人感觉好像人脸检测,目标检测直接成了demo了,主要代码如下: // localize the object std::vector<Point ...
- OpenCV——Brisk特征检测、匹配与对象查找
检测并绘制特征点: #include <opencv2/opencv.hpp> #include <opencv2/xfeatures2d.hpp> #include < ...
随机推荐
- HashMap几个需要注意的知识点
HashMap简介 HashMap 是java集合框架的一部分. key value都允许null值 (除了非同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同) 不保 ...
- Spring-Session实现Session共享Redis集群方式配置教程
循序渐进,由易到难,这样才更有乐趣! 概述 本篇开始继续上一篇的内容基础上进行,本篇主要介绍Spring-Session实现配置使用Redis集群,会有两种配置方式,一种是Redis-Cluster, ...
- Spring-Session实现Session共享入门教程
任何一种技术的出现,都是来解决特定的问题的! 本篇开始学习Spring-Session相关的一些知识学习整理,让我们开始吧! Spring-Session介绍 Spring-Session使用的场景? ...
- httpclient初步封装
Http通信方式:HttpURLConnection和HttpClient HttpURLConnection是java的标准类,什么都没封装,用起来太原始,不方便HttpClient就是一个增强版的 ...
- Xamarin iOS教程之视图显示图像
Xamarin iOS教程之视图显示图像 Xamarin iOS显示图像 在主视图中显示一个图像,可以让开发者的应用程序变的更有趣,例如,在一些应用程序开始运行时,都会通过图像来显示此应用程序的玩法或 ...
- CF815C Karen and Supermarket
题目链接 CF815C Karen and Supermarket 题解 只要在最大化数量的前提下,最小化花费就好了 这个数量枚举ok, dp[i][j][1/0]表示节点i的子树中买了j件商品 i ...
- Codeforces Round #272 (Div. 2) E. Dreamoon and Strings 动态规划
E. Dreamoon and Strings 题目连接: http://www.codeforces.com/contest/476/problem/E Description Dreamoon h ...
- j.u.c系列(02)---线程池ThreadPoolExecutor---tomcat实现策略
写在前面 本文是以同tomcat 7.0.57. jdk版本1.7.0_80为例. 线程池在tomcat中的创建实现为: public abstract class AbstractEndpoint& ...
- CentOS 7下KVM支持虚拟化/嵌套虚拟化配置
开启虚拟化: cat << EOF > /etc/modprobe.d/kvm-nested.conf options kvm-intel nested=1 options kvm- ...
- [Node.js]操作redis
摘要 在实际开发中,免不了要操作mysql,mongodb,redis等数据存储服务器.这里先简单介绍如何操作redis. 一个例子 关于redis服务端的安装这里不再介绍,重点不在这里.感兴趣的可以 ...