为什么需要直方图 ?当表中一列数据比较的值分布比较均匀时,optimzer可以很好的通过最大值,最小值和NDV(唯一值的个数),就可以判断出cardinality.对于cardinality越精确,optimzer就可以更加好的选择执行计划。

--创建测试表并插入数据

create table t1(a int,b varchar2(100));

begin

for i in 1..100 loop

insert into t1 values (1,'abcd');

end loop;

commit;

end;

/

begin

for i in 1..100 loop

insert into t1 values (2,'efg');

end loop;

commit;

end;

/

---收集统计信息

exec dbms_stats.gather_table_stats(tabname => 't1',ownname => user,method_opt => 'for all columns size 1'); --for all columns size 1 不收集直方图信息

---执行一个语句来看看optimizer评估的行

explain plan for select * from t1 where a=1;

select * from table(dbms_xplan.display());

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      |   100 |   700 |     3   (0)| 00:00:01 |

|*  1 |  TABLE ACCESS FULL| T2   |   100 |   700 |     3   (0)| 00:00:01 |

--------------------------------------------------------------------------

返回100行,说明优化器在这种数据平均分布的情况下评估很准确。现在insert into t1 values(3,'mnb'); 一行,人为的模拟数据分布不均,再次收集统计信息

explain plan for select * from t1 where a=3;

PLAN_TABLE_OUTPUT

--------------------------------------------------------------------------------

Plan hash value: 1513984157

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      |    67 |   469 |     3   (0)| 00:00:01 |

|*  1 |  TABLE ACCESS FULL| T2   |    67 |   469 |     3   (0)| 00:00:01 |

--------------------------------------------------------------------------

优化器评估为67行.计算公式为 rows/ndv=(200/3)=66.66666

看看收集了集方图后的结果

SQL> exec dbms_stats.gather_table_stats(tabname => 'T1',ownname => user,method_opt => 'FOR ALL COLUMNS SIZE AUTO');

SQL>  explain plan for select * from t1 where a=3;

PLAN_TABLE_OUTPUT

--------------------------------------------------------------------------------

Plan hash value: 1513984157

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      |     1 |     7 |     3   (0)| 00:00:01 |

|*  1 |  TABLE ACCESS FULL| T2   |     1 |     7 |     3   (0)| 00:00:01 |

--------------------------------------------------------------------------

可以看出通过增加了直方图,oracle比较准确的评估了cardinality。

SQL> select column_name,histogram from user_tab_col_statistics where table_name='T2';

COLUMN_NAME                    HISTOGRAM

------------------------------ ---------------

A                              FREQUENCY       --频率直方图

B                              NONE

直方图分为两种频率直方图和高度平衡直方图

直方图的限制:1,收集直方图有开销,如cpu和磁盘空间;2,对于每个栏位超过254的distinct value,频率直方图的作用开始下降

随着NDV的增加,精度进一步下降,这时候只能使用高度平衡直方图.3,对于字符类型,只能收集前32个字节;

4,在非索引的栏位上收集直方图的效果有限.

高度平衡和频率直方图的选择:对于某个栏位的NDV小于所定义的桶数,使用频率直方图,否则使用高度平衡直方图。两种方式的最大的桶数为254,

SQL> create table t2(a int);

begin

for i in 1..76 loop

insert into t2 values (i);

end loop;

commit;

end;

/

SQL> select count(distinct a) from t2;  --insert 76种不同的值

COUNT(DISTINCTA)

----------------

76

SQL> exec dbms_stats.gather_table_stats(tabname => 'T2',ownname => user,method_opt => 'FOR COLUMNS A SIZE 75');

人为的定义桶数小于NDV,在这种条件,oracle会使用高度平衡直方图,因为频率直方图75个bucket容不下76

SQL>  select column_name,histogram from user_tab_col_statistics where table_name='T2';

COLUMN_NAME                    HISTOGRAM

------------------------------ ---------------

A                              HEIGHT BALANCED

对于频率直方图,如果NDV小于254的情况,ndv应该是和桶数相等的.有些bug会产生不一致,导致评估不准确,具体可以参考metalink的相关bug。

SQL> select count(b.endpoint_value) from user_histograms b where table_name='T1' and column_name='A';

COUNT(B.ENDPOINT_VALUE)

-----------------------

3

SQL> select table_name,column_name,num_distinct from user_tab_col_statistics where table_name='T1' and column_name='A';

TABLE_NAME                     COLUMN_NAME                    NUM_DISTINCT

------------------------------ ------------------------------ ------------

T2                             A                                         3

一般建议的收集方法为'FOR ALL COLUMNS SIZE AUTO',除非有很好的理由去更改,由oracle自行决定是否需要histogram和桶数

为什么需要直方图 ?当表中一列数据比较的值分布比较均匀时,optimzer可以很好的通过最大值,最小值和NDV(唯一值的个数),就可以判断出cardinality.对于cardinality越精确,optimzer就可以更加好的选择执行计划。
--创建测试表并插入数据create table t1(a int,b varchar2(100));beginfor i in 1..100 loopinsert into t1 values (1,'abcd');end loop;commit;end;/beginfor i in 1..100 loopinsert into t1 values (2,'efg');end loop;commit;end;/---收集统计信息exec dbms_stats.gather_table_stats(tabname => 't1',ownname => user,method_opt => 'for all columns size 1'); --for all columns size 1 不收集直方图信息
---执行一个语句来看看optimizer评估的行explain plan for select * from t1 where a=1;select * from table(dbms_xplan.display());--------------------------------------------------------------------------| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |--------------------------------------------------------------------------|   0 | SELECT STATEMENT  |      |   100 |   700 |     3   (0)| 00:00:01 ||*  1 |  TABLE ACCESS FULL| T2   |   100 |   700 |     3   (0)| 00:00:01 |--------------------------------------------------------------------------返回100行,说明优化器在这种数据平均分布的情况下评估很准确。现在insert into t1 values(3,'mnb'); 一行,人为的模拟数据分布不均,再次收集统计信息explain plan for select * from t1 where a=3;PLAN_TABLE_OUTPUT--------------------------------------------------------------------------------Plan hash value: 1513984157--------------------------------------------------------------------------| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |--------------------------------------------------------------------------|   0 | SELECT STATEMENT  |      |    67 |   469 |     3   (0)| 00:00:01 ||*  1 |  TABLE ACCESS FULL| T2   |    67 |   469 |     3   (0)| 00:00:01 |--------------------------------------------------------------------------优化器评估为67行.计算公式为 rows/ndv=(200/3)=66.66666看看收集了集方图后的结果SQL> exec dbms_stats.gather_table_stats(tabname => 'T1',ownname => user,method_opt => 'FOR ALL COLUMNS SIZE AUTO');SQL>  explain plan for select * from t1 where a=3;PLAN_TABLE_OUTPUT--------------------------------------------------------------------------------Plan hash value: 1513984157--------------------------------------------------------------------------| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |--------------------------------------------------------------------------|   0 | SELECT STATEMENT  |      |     1 |     7 |     3   (0)| 00:00:01 ||*  1 |  TABLE ACCESS FULL| T2   |     1 |     7 |     3   (0)| 00:00:01 |--------------------------------------------------------------------------可以看出通过增加了直方图,oracle比较准确的评估了cardinality。SQL> select column_name,histogram from user_tab_col_statistics where table_name='T2';COLUMN_NAME                    HISTOGRAM------------------------------ ---------------A                              FREQUENCY       --频率直方图B                              NONE直方图分为两种频率直方图和高度平衡直方图直方图的限制:1,收集直方图有开销,如cpu和磁盘空间;2,对于每个栏位超过254的distinct value,频率直方图的作用开始下降随着NDV的增加,精度进一步下降,这时候只能使用高度平衡直方图.3,对于字符类型,只能收集前32个字节;4,在非索引的栏位上收集直方图的效果有限.高度平衡和频率直方图的选择:对于某个栏位的NDV小于所定义的桶数,使用频率直方图,否则使用高度平衡直方图。两种方式的最大的桶数为254,SQL> create table t2(a int);beginfor i in 1..76 loopinsert into t2 values (i);end loop;commit;end;/SQL> select count(distinct a) from t2;  --insert 76种不同的值COUNT(DISTINCTA)----------------              76SQL> exec dbms_stats.gather_table_stats(tabname => 'T2',ownname => user,method_opt => 'FOR COLUMNS A SIZE 75');人为的定义桶数小于NDV,在这种条件,oracle会使用高度平衡直方图,因为频率直方图75个bucket容不下76SQL>  select column_name,histogram from user_tab_col_statistics where table_name='T2';COLUMN_NAME                    HISTOGRAM------------------------------ ---------------A                              HEIGHT BALANCED
对于频率直方图,如果NDV小于254的情况,ndv应该是和桶数相等的.有些bug会产生不一致,导致评估不准确,具体可以参考metalink的相关bug。SQL> select count(b.endpoint_value) from user_histograms b where table_name='T1' and column_name='A';COUNT(B.ENDPOINT_VALUE)-----------------------                      3SQL> select table_name,column_name,num_distinct from user_tab_col_statistics where table_name='T1' and column_name='A';TABLE_NAME                     COLUMN_NAME                    NUM_DISTINCT------------------------------ ------------------------------ ------------T2                             A                                         3一般建议的收集方法为'FOR ALL COLUMNS SIZE AUTO',除非有很好的理由去更改,由oracle自行决定是否需要histogram和桶数

ORACLE直方图(10g)的更多相关文章

  1. Oracle直方图的详细解析

    yuanwen:http://blog.csdn.net/javacoffe/article/details/5578206 Oracle直方图解析 一.    何谓直方图: 直方图是一种统计学上的工 ...

  2. Oracle直方图的详细解析(转)

    Oracle直方图解析 一.    何谓直方图: 直方图是一种统计学上的工具,并非Oracle专有.通常用于对被管理对象的某个方面的质量情况进行管理,通常情况下它会表现为一种几何图形表,这个图形表是根 ...

  3. Oracle Forms 10g Tutorial Ebook Download - Oracle Forms Blog

    A step by step tutorial for Oracle Forms 10g development. This guide is helpful for freshers in Orac ...

  4. 问题: Oracle Database 10g 未在当前操作系统中经过认证

    问题: Oracle Database 10g 未在当前操作系统中经过认证 在Windows 7中安装Oracle 10g. 使用的Orcale版本是10g. 步骤1: 在Orcale官网上下载,下载 ...

  5. Creating Custom Login Screen In Oracle Forms 10g

    Below is the example plsql unit to validate login credentials and after successful validation open a ...

  6. Writing Text Files On The Client in Oracle Forms 10g

    Below is the example to write file on client in Oracle Forms 10g with webutil library package.Note:  ...

  7. Horizontal Toolbar With Navigational Buttons Form Sample For Oracle Forms 10g/11g

    Sharing an Oracle Form Htoolbar.fmb for Oracle Forms 10g/11g containing Horizontal Toolbar canvas an ...

  8. Calling / Running a report in Oracle forms 10g / 11g

    Calling / Running a report in Oracle forms 10g / 11g Below is the procedure to call a report in Orac ...

  9. Oracle 直方图理论

    一.何为直方图 直方图是一种几何形图表,它是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边.以频数为高度的一系列连接起来的直方型矩形图,如图所示 二.ORACLE 直方图 在Oracle中 ...

  10. Linux 上Oracle RAC 10g 升级到 Oracle RAC 11g

    了解如何在 Oracle Enterprise Linux 5 上逐步将 Oracle RAC 10g 第 2 版升级到 Oracle RAC 11g. Oracle 数据库 11g(即,新一代网格计 ...

随机推荐

  1. Java垃圾回收器的工作原理

    上课,老师照本宣科,实在难以理解,干脆就看书包里的Java书,正好看了Java的垃圾回收器是如何工作的,觉得有必要记录一下. 参考于 Java编程思想第四版(Thinking in Java) 老年代 ...

  2. JavaScript是如何工作的:与WebAssembly比较及其使用场景

    摘要: WebAssembly未来可期. 原文:JavaScript是如何工作的:与WebAssembly比较及其使用场景 作者:前端小智 Fundebug经授权转载,版权归原作者所有. 这是专门探索 ...

  3. css 小知识点:inline/inline-block/line-height

    inline: 此元素会被显示为内联元素,元素前后没有换行符.因此:无法设置宽度和高度- inline-block: 行内块元素.元素前后没有换行符(CSS2.1 新增的值) 用通俗的话讲,就是不独占 ...

  4. js 函数重载

    简单定义:根据不同参数长度来实现让同一个函数,进行不同处理. function addMethod (obj, name, fun) { let old = obj[name] obj[name] = ...

  5. 数据库sql语句常见面试题

    转载:本文转载自:https://blog.csdn.net/woshinidedege/article/details/78659202 一.有以下几张表及表结构Student(Sid,Sname, ...

  6. awesome python 中文版 相见恨晚!

    awesome python 中文版 相见恨晚!   https://www.zhihu.com/question/24590883 这篇知乎厉害了!一定要学习! 作者:知乎用户链接:https:// ...

  7. angular select2 ng-model 取值 ng-change调用方法

    页面: 引入文件 '/select2.css', '/select2-bootstrap.css', '/select2.min.js', '/ui-select2.js' html: <div ...

  8. 小tips:HTML DOM中的children和childNodes属性

    childNodes 属性 标准的,childNodes 属性返回节点的子节点集合,以 NodeList 对象.包括HTML节点,所有属性,文本.可以通过nodeType来判断是哪种类型的节点,只有当 ...

  9. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  10. java垃圾回收机制GC

    记得第一次总结java 的GC的时候,是刚开始在课堂上学习GC的时候,那时候许老师第一节java课 课后老师说同学们可以去深入理解一下java的GC机制: 但是是花费了三四个小时,翻看了<Thi ...