洛谷

Codeforces


思路

一开始想偏想到了DP,后来发现我SB了……

考虑每个\(a_i<x\)的\(i\),记录它前一个和后一个到它的距离为\(L_i,R_i\),那么就有

\[ans_k=\sum_{i=1}^n L_iR_{i+k-1}
\]

显然把\(L\)数组翻转一下就是一个FFT了。

最后特判\(k=0\)。


代码

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 800202
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
inline void print(register int x)
{
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int n,x;
int a[sz];
int L[sz],R[sz]; const db PI=acos(-1.0);
struct Complex
{
db x,y;
Complex(db xx=0,db yy=0){x=xx,y=yy;}
};
const Complex operator + (const Complex &a,const Complex &b) {return Complex(a.x+b.x,a.y+b.y);}
const Complex operator - (const Complex &a,const Complex &b) {return Complex(a.x-b.x,a.y-b.y);}
const Complex operator * (const Complex &a,const Complex &b) {return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);} int limit,r[sz];
void FFT_init(int n)
{
int l=-1;limit=1;
while (limit<=n+n) ++l,limit<<=1;
rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
void FFT(Complex *a,int type)
{
for (int i=0;i<limit;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int mid=1;mid<limit;mid<<=1)
{
Complex Wn(cos(PI/mid),type*sin(PI/mid));
for (int len=mid<<1,j=0;j<limit;j+=len)
{
Complex w(1,0);
for (int k=0;k<mid;k++,w=w*Wn)
{
Complex x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y;a[j+k+mid]=x-y;
}
}
}
}
Complex _a[sz],_b[sz]; ll ans[sz];
ll CC(int n){return 1ll*n*(n+1)/2;} int main()
{
file();
int cnt,c,cc;
read(n,x);
rep(i,1,n) read(a[i]);
cnt=c=0;
rep(i,1,n)
if (a[i]<x) L[++c]=cnt+1,cnt=0;
else ++cnt;
cnt=0;cc=c;
drep(i,n,1)
if (a[i]<x) R[c--]=cnt+1,cnt=0;
else ++cnt;
reverse(L+1,L+cc+1);
rep(i,1,cc) _a[i].x=L[i],_b[i].x=R[i];
FFT_init(cc+1);
FFT(_a,1);FFT(_b,1);
rep(i,0,limit-1) _a[i]=_a[i]*_b[i];
FFT(_a,-1);
rep(i,1,n) ans[i]=ll(_a[i+cc].x/limit+0.5);
if (cc)
{
rep(i,1,cc) ans[0]+=CC(R[i]-1);
ans[0]+=CC(L[cc]-1);
} else ans[0]=CC(n);
rep(i,0,n) printf("%lld ",ans[i]);
return 0;
}

Codeforces 993E Nikita and Order Statistics [FFT]的更多相关文章

  1. [Codeforces 993E]Nikita and Order Statistics

    Description 题库链接 给你一个长度为 \(n\) 的序列 \(A\) ,和一个数 \(x\) ,对于每个 \(i= 0\sim n\) ,求有多少个非空子区间满足恰好有 \(i\) 个数 ...

  2. CF993E:Nikita and Order Statistics(FFT)

    Description 给你一个数组 $a_{1 \sim n}$,对于 $k = 0 \sim n$,求出有多少个数组上的区间满足:区间内恰好有 $k$ 个数比 $x$ 小.$x$ 为一个给定的数. ...

  3. CF993E Nikita and Order Statistics 【fft】

    题目链接 CF993E 题解 我们记小于\(x\)的位置为\(1\),否则为\(0\) 区间由端点决定,转为两点前缀和相减 我们统计出每一种前缀和个数,记为\(A[i]\)表示值为\(i\)的位置出现 ...

  4. CF993E Nikita and Order Statistics

    小于x的赋值为1,否则为0 区间等于k的个数 求0~n连续的n+1个k? N<=1e5? FFT! 考虑卷积建模:用下标相加实现转移到位,数值相乘类比乘法原理! 法一: 分治,然后FFT没了 法 ...

  5. CF993E Nikita and Order Statistics 多项式卷积 快速傅里叶变换

    题意: 给你一个数组a1~an,对于k=0~n,求出有多少个数组上的区间满足:区间内恰好有k个数比x小.x为一个给定的数.n<=10^5.值域没有意义. 分析: 大神们都说这道题是一个套路题,真 ...

  6. Codeforces 756C Nikita and stack

    Codeforces 756C Nikita and stack 题目大意: 给定一个对栈进行操作的操作序列,初始时序列上没有任何操作,每一次将一个本来没有操作的位置变为某一操作(push(x),po ...

  7. codeforces 632E. Thief in a Shop fft

    题目链接 E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input stan ...

  8. Codeforces #254 div1 B. DZY Loves FFT 暴力乱搞

    B. DZY Loves FFT 题目连接: http://codeforces.com/contest/444/problem/B Description DZY loves Fast Fourie ...

  9. codeforces 286 E. Ladies' Shop (FFT)

    E. Ladies' Shop time limit per test 8 seconds memory limit per test 256 megabytes input standard inp ...

随机推荐

  1. IScroll基本用法

    一.为了防止手机上卡顿:1.从新设置一下焦点.2. <script>try { window.PointerEvent = undefined; } catch (e) { } </ ...

  2. Mysql下Limit注入方法(此方法仅适用于5.0.0<mysql<5.6.6的版本)

    SQL语句类似下面这样:(此方法仅适用于5.0.0<mysql<5.6.6的版本) SELECT field FROM table WHERE id > 0 ORDER BY id ...

  3. PHP获取表单并使用数组存储 疯狂提示 Notice: Undefined offset

    $answer=array(); $answer[0]='0'; for($i=1;$i<=$QUESTION_COUNT;$i++){ $answer[$i]=$_POST[(string)$ ...

  4. Django之CRM项目Day5-跳转页面 跟进记录 报名记录

    1 编辑和添加后跳转页面: 思路:写一个参数将路径的条件带上 注意:捋流程的时候从urls里开始 1.在crm文件夹下新建python包:templatetags,在包里新建url.py: from ...

  5. PHP入门知识

    一.搭建开发环境 想要使用一门后端语言,当然是要先搭建开发环境,模拟出服务器环境,不然怎么体现出后端,所以就先大众使用使用的Apache.Mysql,如果不想那么多折腾,建议直接使用xampp或者wa ...

  6. easyui 进阶之表单校验、自定义校验

    前言 easyui是一种基于jQuery的用户界面插件集合,它为创建现代化,互动,JavaScript应用程序,提供必要的功能,完美支持HTML5网页的完整框架,节省网页开发的时间和规模.非常的简单易 ...

  7. Flume思维导图

  8. js数据校验插件

    //数据校验 /** *{type:"类型",notEmpty:true,regxp: reg,MaxLength: number,MinLength number,message ...

  9. 《从Paxos到Zookeeper:分布式一致性原理与实践》第一章读书笔记

    第一章主要介绍了计算机系统从集中式向分布式系统演变过程中面临的挑战,并简要介绍了ACID.CAP和BASE等经典分布式理论,主要包含以下内容: 集中式的特点 分布式的特点 分布式环境的各种问题 ACI ...

  10. 【逆向笔记】2017年全国大学生信息安全竞赛 Reverse 填数游戏

    2017年全国大学生信息安全竞赛 Reverse 填数游戏 起因是吾爱破解大手发的解题思路,觉得题挺有意思的,就找来学习学习 这是i春秋的下载链接 http://static2.ichunqiu.co ...