这里说一下euclidean_loss_layer.cpp关于该欧式loss层的解析,代码如下:

#include <vector>

#include "caffe/layers/euclidean_loss_layer.hpp"
#include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> //reshape步骤:验证以及将loss层的误差项的形状进行校正
void EuclideanLossLayer<Dtype>::Reshape(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
LossLayer<Dtype>::Reshape(bottom, top);
CHECK_EQ(bottom[0]->count(1), bottom[1]->count(1))
<< "Inputs must have the same dimension.";
diff_.ReshapeLike(*bottom[0]);
} template <typename Dtype>
void EuclideanLossLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
int count = bottom[0]->count();
caffe_sub(
count,
bottom[0]->cpu_data(),
bottom[1]->cpu_data(),
diff_.mutable_cpu_data()); //赋值diff_,它是loss层自定义的一个blob,用来存储终极的误差项,然后基于这个blob进行反向传播,这儿的值即(f(x) - y);
Dtype dot = caffe_cpu_dot(count, diff_.cpu_data(), diff_.cpu_data());
Dtype loss = dot / bottom[0]->num() / Dtype(2);
top[0]->mutable_cpu_data()[0] = loss; //按照定义计算loss
} template <typename Dtype>
void EuclideanLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
for (int i = 0; i < 2; ++i) {
if (propagate_down[i]) {
const Dtype sign = (i == 0) ? 1 : -1;
const Dtype alpha = sign * top[0]->cpu_diff()[0] / bottom[i]->num(); //注意这里的top[0]->cpu_diff()[0]的值不是传递的,而是之前已经初始化好的,初始化过程在layer.hpp的SetLossWeights()函数中,值为(loss_weight * 1),即loss_weight;
caffe_cpu_axpby( //功能: b = alpha * a + beta * b
bottom[i]->count(), // count
alpha, // alpha
diff_.cpu_data(), // a, diff_即该loss层的误差项,即(f(x) - y)
Dtype(0), // beta
bottom[i]->mutable_cpu_diff()); // b
}
}
} #ifdef CPU_ONLY
STUB_GPU(EuclideanLossLayer);
#endif INSTANTIATE_CLASS(EuclideanLossLayer);
REGISTER_LAYER_CLASS(EuclideanLoss); //在caffe的工厂中注册这个函数,从而在对应的prototxt中就可以使用“ type:EuclideanLoss ”这个type了 } // namespace caffe

关于caffe_set , caffe_sub , caffe_cpu_axpby等等的解释可以参考:https://blog.csdn.net/seven_first/article/details/47378697#9caffeadd-caffesub-caffemul-caffediv-%E5%87%BD%E6%95%B0

Euclideanloss_layer层解析的更多相关文章

  1. slice层解析

    如果说之前的Concat是将多个bottom合并成一个top的话,那么这篇博客的slice层则完全相反,是把一个bottom分解成多个top,这带来了一个问题,为什么要这么做呢?为什么要把一个低层的切 ...

  2. json两层解析

    public class Demo { public static void main(String[] args) { try { // 创建连接 服务器的连接地址 URL url = new UR ...

  3. Caffe_Scale层解析

    Caffe Scale层解析 前段时间做了caffe的batchnormalization层的解析,由于整体的BN层实现在Caffe是分段实现的,因此今天抽时间总结下Scale层次,也会后续两个层做合 ...

  4. ASP.NET SignalR2持久连接层解析

    越是到年底越是感觉浑身无力,看着啥也不想动,只期盼着年终奖的到来以此来给自己打一针强心剂.估摸着大多数人都跟我一样犯着这样浑身无力的病,感觉今年算是没挣到啥钱,但是话也不能这么说,搞得好像去年挣到钱了 ...

  5. Spring的Service层与Dao层解析

    本文转载于网络,觉得写得很透彻. dao完成连接数据库修改删除添加等的实现细节,例如sql语句是怎么写的,怎么把对象放入数据库的.service层是面向功能的,一个个功能模块比如说银行登记并完成一次存 ...

  6. Mybatis框架基础支持层——解析器模块(2)

    解析器模块,核心类XPathParser /** * 封装了用于xml解析的类XPath.Document和EntityResolver */ public class XPathParser { / ...

  7. Eltwise层解析

    Concat层虽然利用到了上下文的语义信息,但仅仅是将其拼接起来,之所以能起到效果,在于它在不增加算法复杂度的情形下增加了channel数目.那有没有直接关联上下文的语义信息呢?答案是Eltwise层 ...

  8. Concat层解析

    Concat层的作用就是将两个及以上的特征图按照在channel或num维度上进行拼接,并没有eltwise层的运算操作,举个例子,如果说是在channel维度上进行拼接conv_9和deconv_9 ...

  9. TCP协议详解7层和4层解析(美团,阿里) 尤其是三次握手,四次挥手 具体发送的报文和状态都要掌握

    如果想了解HTTP的协议结构,原理,post,get的区别(阿里面试题目),请参考:HTTP协议 结构,get post 区别(阿里面试) 这里有个大白话的解说,可以参考:TCP/IP协议三次握手和四 ...

随机推荐

  1. 2017-12-14python全栈9期第一天第二节之初始计算机系统

    CPU:相当于人的大脑.用于计算 内存:储存数据.4G.8G.32G....成本高.断电即消失 硬盘:固态.机械.长久保存数据+文件 操作系统: 应用程序:

  2. Rancher之HA部署

    sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-'EOF' { "registry-mirrors&q ...

  3. HDFS 读写数据流程

    一.上传数据 二.下载数据 三.读写时的节点位置选择 1.网络节点距离(机架感知) 下图中: client 到 DN1 的距离为 4 client 到 NN 的距离为 3 DN1 到 DN2 的距离为 ...

  4. Redis之Transactions(事物)

    你问我Redis支不支持事物?告诉你,Redis对事物的支持是部分支持(对比关系型数据库,没有强一致性) 定义:一个队列.一次性.顺序的.排他性的执行一系列命令 常用命令: DISCARD 取消事物, ...

  5. Web API中的路由(二)——属性路由

    一.属性路由的概念 路由让webapi将一个uri匹配到对应的action,Web API 2支持一种新类型的路由:属性路由.顾名思义,属性路由使用属性来定义路由.通过属性路由,我们可以更好地控制We ...

  6. Sqlserver中的触发器

    一 什么是触发器 1.1  触发器的概念   触发器(trigger)是SQL server来保证数据完整性的一种方法,它是与表事件相关的特殊的存储过程,它的执行是由事件来触发,当对一个表进行操作(  ...

  7. 使用Ruby处理大型CSV文件

    处理大型文件是一种内存密集型操作,可能导致服务器耗尽RAM内存并交换到磁盘.让我们看一下使用Ruby处理CSV文件的几种方法,并测量内存消耗和速度性能. Prepare CSV data sample ...

  8. Golang入门教程(九)复合数据类型使用案例二

    参考:http://www.runoob.com/go/go-slice.html 目录 切片 字典(map) 函数(func) 接口(interface) 通道(chan) 四.切片(Slice) ...

  9. Jquery weui显示右箭头

    <div class='weui_cells weui_cells_access'> <div class='weui_cell'> <div class='weui_c ...

  10. 【十二】jvm 性能调优工具之 jhat (JVM Heap Analysis Tool)

    jhat也是jdk内置的工具之一.主要是用来分析java堆的命令,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言. jhat 非常耗费cpu和内存,所以一般不使 ...