题目描述
听着自己美妙的曲子,小Z进入了梦乡。在梦中,小Z仿佛又回到了自己纵横考场的年代。在梦中,小Z参加了一场
考试,这场考试一共有n道题,每道题的最终得分都是一个大于等于0的整数。然而醒来后,小Z忘记了自己每道题
的得分。他只记得自己计算过m次一些题目的分数和,每道题都被计算过,并且只被计算过一次。除此之外他还记
得其中t道题的满分分别是多少(一道题的得分不会超过满分)。现在小Z想知道他这场考试有多少种得分情况(至
少有一道题的得分不同就算不同的情况),因为这个答案可能很大,你只需要输出答案对1,000,000,007取模后的
结果即可。
题解
看到t比较小,就想到容斥。
我是把每一次求和分开算,最后乘起来,每次找出这次求和的所有限制,然后就2^n枚举限制的选择情况,用C(n+m-1,m-1)算方案数。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#define N 2000009
using namespace std;
typedef long long ll;
const int maxn=;
vector<ll>vec[N];
ll jie[N],ni[N],ans,k[N],sum[N],n,m,p[N],t,num[N];
const int mod=1e9+;
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline ll power(ll x,int y){
ll ans=;
while(y){if(y&)ans=ans*x%mod;x=x*x%mod;y>>=;}
return ans;
}
inline ll C(int x,int y){if(x<y)return ;return jie[x]*ni[y]%mod*ni[x-y]%mod;}
void dfs(int s,int i,int num,int k,int q,ll sum){
if(i>k){
if(s&)ans-=C(sum-num+q-,q-);
else ans+=C(sum-num+q-,q-);
ans=(ans%mod+mod)%mod;
return;
}
dfs(s+,i+,num+p[i]+,k,q,sum);dfs(s,i+,num,k,q,sum);
}
int main(){
// freopen("Equation.in","r",stdin);
// freopen("Equation.out","w",stdout);
n=rd();m=rd();int x,y;
jie[]=;for(int i=;i<=maxn;++i)jie[i]=jie[i-]*i%mod;ni[maxn]=power(jie[maxn],mod-);
for(int i=maxn-;i>=;--i)ni[i]=ni[i+]*(i+)%mod;
for(int i=;i<=m;++i){
k[i]=rd();
for(int j=;j<=k[i];++j)x=rd(),vec[i].push_back(x);sum[i]=rd();
}
t=rd();
memset(num,-,sizeof(num));
for(int i=;i<=t;++i){
x=rd();y=rd();num[x]=y;
}ll Ans=;
for(int i=;i<=m;++i){
int q=;
ans=;
for(int j=;j<k[i];++j)if(~num[vec[i][j]])p[++q]=num[vec[i][j]];
dfs(,,,q,k[i],sum[i]);
(Ans*=ans)%=mod;
}
cout<<Ans;
return ;
}

BZOJ5262(容斥)的更多相关文章

  1. POJ1091跳蚤(容斥 + 唯一分解 + 快速幂)

      题意:规定每次跳的单位 a1, a2, a3 …… , an, M,次数可以为b1, b2, b3 …… bn, bn + 1, 正好表示往左,负号表示往右, 求能否调到左边一位,即 a1* b1 ...

  2. HDU 4059 容斥初步练习

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4455】小星星 容斥 + 树形DP

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 137[Submit][Status] ...

  5. cf#305 Mike and Foam(容斥)

    C. Mike and Foam time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  6. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  7. PE-1 & 暴模|容斥

    题意: 求1000以下3或5的倍数之和. SOL: 暴模也是兹瓷的啊... 那么就想到了初赛悲催的滚粗...容斥忘了加上多减的数了... 然后对着题...T = 3*333*(1+333)/2 + 5 ...

  8. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

  9. hdu 5792(树状数组,容斥) World is Exploding

    hdu 5792 要找的无非就是一个上升的仅有两个的序列和一个下降的仅有两个的序列,按照容斥的思想,肯定就是所有的上升的乘以所有的下降的,然后再减去重复的情况. 先用树状数组求出lx[i](在第 i ...

随机推荐

  1. php常用方法

    在日常开发中,经常我们使用系统方法或者是自己封装的方法进行项目的开发.再此总结一下!!! 一.对于字符串截取 1.使用mbstring扩展  (注意编码的设置) mb_substr($str,2,5, ...

  2. C# DataTable详解

    添加引用 using System.Data; 创建表 //创建一个空表 DataTable dt = new DataTable(); //创建一个名为"Table_New"的空 ...

  3. window.location.href ie 不兼容问题

    今天再做项目演示的时候,用的是ie浏览器报错404,项目都运行好久了,第一次用ie就这样了悲剧,贴下解决方法吧 function getContextPath() { var pathName = d ...

  4. LODOP安装参数 及静默安装

    在cmd命令里里静默安装lodop(c-lodop不能静默安装),本人的安装文件放在D:\lodopdownload\3060\Lodop6.224_Clodop3.060,如下所示: lodop静默 ...

  5. HJ212 CRC 16 (C#)

    算法 CRC16 校验寄存器赋值为 0xFFFF: 取被校验串的第一个字节赋值给临时寄存器: 临时寄存器与 CRC16 校验寄存器的高位字节进行"异或"运算,赋值给 CRC16 校 ...

  6. c++ 的绝对值函数

    添加头文件 #include <cmath> 对于整数 abs(); 对于浮点数 fabs();

  7. 51nod1016

    1016 水仙花数 V2 1 秒 131,072 KB 160 分 6 级题   水仙花数是指一个 n 位数 ( n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身.(例如:1^3 + 5^3 ...

  8. 前端vue拖拽

    工作上遇到的需求:页面上需要拖拽一个小方块div拷贝至保存的容器中. 一.可拖拽 那么我们需要对小方块div进行授权,设置draggable="true"允许其被拖动 二.定义拖拽 ...

  9. 源码分析: 图片加载框架Picasso源码分析

    使用: Picasso.with(this) .load("http://imgstore.cdn.sogou.com/app/a/100540002/467502.jpg") . ...

  10. Json中Date映射到model

    @DateTimeFormat(pattern="yyyy-MM-dd") private Date nenddate; public Date getNenddate() { r ...