A. Soldier and Bananas

 

A soldier wants to buy w bananas in the shop. He has to pay k dollars for the first banana, 2k dollars for the second one and so on (in other words, he has to pay i·k dollars for the i-th banana).

He has n dollars. How many dollars does he have to borrow from his friend soldier to buy w bananas?

Input

The first line contains three positive integers k, n, w (1  ≤  k, w  ≤  1000, 0 ≤ n ≤ 109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.

Output

Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.

Sample test(s)
input
3 17 4
output
13
 #include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; #define LL __int64
LL n,k,w; int main()
{
int i;
LL sum = ;
scanf("%I64d%I64d%I64d",&k,&n,&w);
for(i = ;i<=w;i++)
sum +=i*k;
if(n>=sum)
printf("0\n");
else
printf("%I64d\n",sum-n); return ;
}

B. Soldier and Badges

 

Colonel has n badges. He wants to give one badge to every of his n soldiers. Each badge has a coolness factor, which shows how much it's owner reached. Coolness factor can be increased by one for the cost of one coin.

For every pair of soldiers one of them should get a badge with strictly higher factor than the second one. Exact values of their factors aren't important, they just need to have distinct factors.

Colonel knows, which soldier is supposed to get which badge initially, but there is a problem. Some of badges may have the same factor of coolness. Help him and calculate how much money has to be paid for making all badges have different factors of coolness.

Input

First line of input consists of one integer n (1 ≤ n ≤ 3000).

Next line consists of n integers ai (1 ≤ ai ≤ n), which stand for coolness factor of each badge.

Output

Output single integer — minimum amount of coins the colonel has to pay.

Sample test(s)
input
4
1 3 1 4
output
1
input
5
1 2 3 2 5
output
2
Note

In first sample test we can increase factor of first badge by 1.

In second sample test we can increase factors of the second and the third badge by 1.

题意:给你n堆价值,要求得到每堆价值是独一无二的,问你往每堆加多少,最少加多少。

思路:(贪心)先排序,然后以第一个为基准,后面的不大于前面的,就加加;

转载请注明出处:寻找&星空の孩子

题目链接:http://codeforces.com/contest/546/problem/B

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 5000005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+;
#define LL __int64
int n,a[];
int main()
{
int i,j,ans;
while(~scanf("%d",&n))
{
ans = ;
int sum1 = ,sum2 = ;
for(i = ; i<=n; i++)
{
scanf("%d",&a[i]);
sum1+=a[i];
}
sort(a+,a++n);
sum2 = a[];
for(i = ; i<=n; i++)
{
if(a[i] == a[i-])
a[i]++;
else if(a[i]<a[i-])
a[i] +=(a[i-]-a[i])+;
sum2+=a[i];
}
printf("%d\n",sum2-sum1);
} return ;
}

C. Soldier and Cards

 

Two bored soldiers are playing card war. Their card deck consists of exactly n cards, numbered from 1 to n, all values are different. They divide cards between them in some manner, it's possible that they have different number of cards. Then they play a "war"-like card game.

The rules are following. On each turn a fight happens. Each of them picks card from the top of his stack and puts on the table. The one whose card value is bigger wins this fight and takes both cards from the table to the bottom of his stack. More precisely, he first takes his opponent's card and puts to the bottom of his stack, and then he puts his card to the bottom of his stack. If after some turn one of the player's stack becomes empty, he loses and the other one wins.

You have to calculate how many fights will happen and who will win the game, or state that game won't end.

Input

First line contains a single integer n (2 ≤ n ≤ 10), the number of cards.

Second line contains integer k1 (1 ≤ k1 ≤ n - 1), the number of the first soldier's cards. Then follow k1 integers that are the values on the first soldier's cards, from top to bottom of his stack.

Third line contains integer k2 (k1 + k2 = n), the number of the second soldier's cards. Then follow k2 integers that are the values on the second soldier's cards, from top to bottom of his stack.

All card values are different.

Output

If somebody wins in this game, print 2 integers where the first one stands for the number of fights before end of game and the second one is 1 or 2 showing which player has won.

If the game won't end and will continue forever output  - 1.

Sample test(s)
input
4
2 1 3
2 4 2
output
6 2
input
3
1 2
2 1 3
output
-1
Note

First sample:

Second sample:

题意:给一个n(<=10)表示两人手中共有n张牌,接下来一行表示第1个人有k1张牌,k1 v1[1] v1[2]......v1[k1], v1[i]表示第i 张牌的大小,第三行表示第2个人有k2张牌,k2 v2[1] v2[2]......v2[k2], v2[i]表示第i 张牌的大小。每一轮,两人从牌顶部各出一张,谁出的牌大则两张牌归谁,放入到自己牌的底部,直到其中一个人手中没有牌出,则那个人输了。问需要多少轮,哪个人赢了。如果没有解则输出-1.

思路:(模拟题)直接模拟一下过程,主要是标记一下两个人手中牌的状态,用map<string,map<string,bool> >vist 标记一下。

转载请注明出处:寻找&星空の孩子

题目链接:http://codeforces.com/contest/546/problem/C

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 5000005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+; map<string,map<string,int> > vis;
int n;
int k1,k2;
int a[],b[],c[];
char s1[],s2[]; int main()
{
int i,j,k;
scanf("%d",&n);
scanf("%d",&k1);
for(i = ; i<k1; i++)
{
scanf("%d",&a[i]);
c[i] = a[i];
}
scanf("%d",&k2);
for(i = ; i<k2; i++)
{
scanf("%d",&b[i]);
c[k1+i] = b[i];
}
sort(c,c+k1+k2);
for(i = ; i<k1; i++)
{
for(j = ; j<k1+k2; j++)
{
if(a[i]==c[j])
s1[i] = j+'';
}
}
s1[k1] = '\0';
for(i = ; i<k2; i++)
{
for(j = ; j<k1+k2; j++)
{
if(b[i]==c[j])
s2[i] = j+'';
}
}
s2[k2] = '\0';
vis[s1][s2] = ;
int ans = ;
while(k1&&k2)
{
int p1 = s1[],p2 = s2[];
// printf("[%d %d %d %d]\n",p1,p2,k1,k2); /* printf("(1):");
for(i = 0; i<k1; i++)
printf("%c ",s1[i]);
printf("\n");
printf("(2):");
for(i = 0; i<k2; i++)
printf("%c ",s2[i]);
printf("\n");*/
if(p1>p2)
{
for(i = ; i<k2; i++)
s2[i] = s2[i+];
k2--;
for(i = ; i<k1; i++)
s1[i] = s1[i+];
s1[k1-] = p2;
s1[k1] = p1;
k1++;
s2[k2] = s1[k1] = '\0';
}
else
{
for(i = ; i<k1; i++)
s1[i] = s1[i+];
k1--;
for(i = ; i<k2; i++)
s2[i] = s2[i+];
s2[k2-] = p1;
s2[k2] = p2;
k2++;
s2[k2] = s1[k1] = '\0';
}
/* printf("(1):");
for(i = 0; i<k1; i++)
printf("%c ",s1[i]);
printf("\n");
printf("(2):");
for(i = 0; i<k2; i++)
printf("%c ",s2[i]);
printf("\n");*/
if(vis[s1][s2])
{
ans = -;
break;
}
//printf("%d %d\n",k1,k2);
ans++;
vis[s1][s2] = ;
}
printf("%d",ans);
if(ans!=-)
{
if(k1)
printf("");
else
printf("");
}
printf("\n"); return ;
}

D. Soldier and Number Game

 

Two soldiers are playing a game. At the beginning first of them chooses a positive integer n and gives it to the second soldier. Then the second one tries to make maximum possible number of rounds. Each round consists of choosing a positive integer x > 1, such that n is divisible by x and replacing n with n / x. When n becomes equal to 1 and there is no more possible valid moves the game is over and the score of the second soldier is equal to the number of rounds he performed.

To make the game more interesting, first soldier chooses n of form a! / b! for some positive integer a and b (a ≥ b). Here by k! we denote the factorial of k that is defined as a product of all positive integers not large than k.

What is the maximum possible score of the second soldier?

Input

First line of input consists of single integer t (1 ≤ t ≤ 1 000 000) denoting number of games soldiers play.

Then follow t lines, each contains pair of integers a and b (1 ≤ b ≤ a ≤ 5 000 000) defining the value of n for a game.

Output

For each game output a maximum score that the second soldier can get.

Sample test(s)
input
2
3 1
6 3
output
2
5
题意:n=a!/b!问你n的素数因子的个数。
思路:素数打表;
转载请注明出处:寻找&星空の孩子
题目链接:http://codeforces.com/contest/546/problem/D
 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 5000005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+;
int p[N];
int a[N];
int prime[];
LL sum[N];
void init()
{ for(int i=; i<; ++i)
prime[i] = INF;
prime[] = ;
int num = ;
for(int i=; i<; ++i)
{
int x = ;
while(i%prime[x] && prime[x] <= i) ++x;
if( !(i%prime[x]) )
a[i] = prime[x];
else
{
prime[++num] = i;
a[i] = i;
}
}
a[] =;
for(int i=; i< N; ++i)
{
int x = ;
while(i%prime[x] && prime[x] <= i) ++x;
if( !(i%prime[x]) )
a[i] = prime[x];
else
a[i] = i;
}
p[] = ;
for(int i=; i <N; ++i)
p[i] = p[i/a[i]] + ;
}
int main()
{
int i,j,k;
init();
sum[] = ;
// printf("%d\n",p[4]);
for(i = ; i<=; i++)
{
sum[i] = sum[i-]+p[i];
// printf("%d %I64d\n",i,sum[i]);
}
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&i,&j);
// printf("%d %d %I64d %I64d\n",i,j+1,sum[i],sum[j+1]);
if(i == j)
printf("0\n");
else
printf("%I64d\n",sum[i]-sum[j]);
} return ;
}
 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 5000005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+;
int p[N];
bool v[N];
int a[N];
int prime[N/];
LL sum[N];
void init()
{
for(int i=; i<N; ++i)
a[i] = i;
int num=-;
for(int i=; i<N; ++i)
{
if(!v[i]) prime[++num] = i;
for(int j=; j<=num && i*prime[j] < N; ++j)
{
int t = i*prime[j];
v[t] =;
if(a[t] > prime[j]) a[t] = prime[j];
if(i%prime[j] == ) break;
}
}
p[] = ;
for(int i=; i <N; ++i)
p[i] = p[i/a[i]] + ;
}
int main()
{
int i,j,k;
init();
sum[] = ;
for(i = ; i<=; i++)
{
sum[i] = sum[i-]+p[i];
}
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&i,&j);
if(i == j)
printf("0\n");
else
printf("%I64d\n",sum[i]-sum[j]);
} return ;
}

E. Soldier and Traveling

 

In the country there are n cities and m bidirectional roads between them. Each city has an army. Army of the i-th city consists of aisoldiers. Now soldiers roam. After roaming each soldier has to either stay in his city or to go to the one of neighboring cities by at moving along at most one road.

Check if is it possible that after roaming there will be exactly bi soldiers in the i-th city.

Input

First line of input consists of two integers n and m (1 ≤ n ≤ 100, 0 ≤ m ≤ 200).

Next line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 100).

Next line contains n integers b1, b2, ..., bn (0 ≤ bi ≤ 100).

Then m lines follow, each of them consists of two integers p and q (1 ≤ p, q ≤ np ≠ q) denoting that there is an undirected road between cities p and q.

It is guaranteed that there is at most one road between each pair of cities.

Output

If the conditions can not be met output single word "NO".

Otherwise output word "YES" and then n lines, each of them consisting of n integers. Number in the i-th line in the j-th column should denote how many soldiers should road from city i to city j (if i ≠ j) or how many soldiers should stay in city i (if i = j).

If there are several possible answers you may output any of them.

Sample test(s)
input
4 4
1 2 6 3
3 5 3 1
1 2
2 3
3 4
4 2
output
YES
1 0 0 0
2 0 0 0
0 5 1 0
0 0 2 1
input
2 0
1 2
2 1
output
NO

题意:给你一张无向图,每个点有一定数量的人,通过移动可以去邻接点(但是只能移动一次)问你是否能从初始状态移动到目标状态;

思路:网络流+最大流;

转载请注明出处:寻找&星空の孩子

题目链接:http://codeforces.com/contest/546/problem/E

 #include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define captype int const int MAXN = ; //点的总数
const int MAXM = ; //边的总数
const int INF = <<;
struct EDG{
int to,next;
captype cap,flow;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN]; //每种距离(或可认为是高度)点的个数
int dis[MAXN]; //每个点到终点eNode 的最短距离
int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN];
int mapt[][]; void init(){
eid=;
memset(head,-,sizeof(head));
memset(mapt,,sizeof(mapt));
}
//有向边 三个参数,无向边4个参数
void addEdg(int u,int v,captype c,captype rc=){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; edg[eid].flow=; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; edg[eid].flow=; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,,sizeof(gap));
memset(dis,,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -;
gap[]=n;
captype ans=; //最大流
int u=sNode;
while(dis[sNode]<n){ //判断从sNode点有没有流向下一个相邻的点
if(u==eNode){ //找到一条可增流的路
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-; i=pre[edg[i^].to]) //从这条可增流的路找到最多可增的流量Min
if(Min>edg[i].cap-edg[i].flow){
Min=edg[i].cap-edg[i].flow;
inser=i;
}
for(int i=pre[u]; i!=-; i=pre[edg[i^].to]){ edg[i].flow+=Min;
edg[i^].flow-=Min; //可回流的边的流量 if(edg[i].to==eNode||edg[i].to==sNode||edg[i^].to==eNode||edg[i^].to==sNode)
continue;
if(edg[i].cap>){
int tu, tv;
tu=edg[i^].to; tv=edg[i].to-(n-)/;
mapt[tu][tv]+=Min;
}
else{
int tu, tv;
tu=edg[i].to; tv=edg[i^].to-(n-)/;
mapt[tu][tv]-=Min;
} }
ans+=Min;
u=edg[inser^].to;
continue;
}
bool flag = false; //判断能否从u点出发可往相邻点流
int v;
for(int i=cur[u]; i!=-; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap-edg[i].flow> && dis[u]==dis[v]+){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
//如果上面没有找到一个可流的相邻点,则改变出发点u的距离(也可认为是高度)为相邻可流点的最小距离+1
int Mind= n;
for(int i=head[u]; i!=-; i=edg[i].next)
if(edg[i].cap-edg[i].flow> && Mind>dis[edg[i].to]){
Mind=dis[edg[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==) return ans; //当dis[u]这种距离的点没有了,也就不可能从源点出发找到一条增广流路径
//因为汇点到当前点的距离只有一种,那么从源点到汇点必然经过当前点,然而当前点又没能找到可流向的点,那么必然断流
dis[u]=Mind+;//如果找到一个可流的相邻点,则距离为相邻点距离+1,如果找不到,则为n+1
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^].to; //退一条边
}
return ans;
}
int main(){
int n,m ,s , t , u,v,c[],tc;
while(scanf("%d%d",&n,&m)>){
init();
s=;
t=*n+;
int ans=;
for(int i=; i<=n; i++){
scanf("%d",&c[i]);
ans+=c[i];
addEdg(s,i,c[i]);
addEdg(i,i+n,c[i]);
}
int sum=;
for(int i=; i<=n; i++)
{
scanf("%d",&tc); sum+=tc;
addEdg(i+n,t,tc);
}
while(m--){
scanf("%d%d",&u,&v);
addEdg(u,v+n,c[u]);
addEdg(v,u+n,c[v]);
}
if(ans!=sum){
printf("NO\n"); continue;
}
ans -= maxFlow_sap(s,t,t+);
if(ans==){
printf("YES\n");
for(int i=; i<=n; i++){
for(int j=; j<n; j++)
printf("%d ",mapt[i][j]);
printf("%d\n",mapt[i][n]);
}
}
else
printf("NO\n");
}
}

Codeforces Round #304 (Div. 2) -----CF546的更多相关文章

  1. DP+埃氏筛法 Codeforces Round #304 (Div. 2) D. Soldier and Number Game

    题目传送门 /* 题意:b+1,b+2,...,a 所有数的素数个数和 DP+埃氏筛法:dp[i] 记录i的素数个数和,若i是素数,则为1:否则它可以从一个数乘以素数递推过来 最后改为i之前所有素数个 ...

  2. queue+模拟 Codeforces Round #304 (Div. 2) C. Soldier and Cards

    题目传送门 /* 题意:两堆牌,每次拿出上面的牌做比较,大的一方收走两张牌,直到一方没有牌 queue容器:模拟上述过程,当次数达到最大值时判断为-1 */ #include <cstdio&g ...

  3. 贪心 Codeforces Round #304 (Div. 2) B. Soldier and Badges

    题目传送门 /* 题意:问最少增加多少值使变成递增序列 贪心:排序后,每一个值改为前一个值+1,有可能a[i-1] = a[i] + 1,所以要 >= */ #include <cstdi ...

  4. 水题 Codeforces Round #304 (Div. 2) A. Soldier and Bananas

    题目传送门 /* 水题:ans = (1+2+3+...+n) * k - n,开long long */ #include <cstdio> #include <algorithm ...

  5. 数学+DP Codeforces Round #304 (Div. 2) D. Soldier and Number Game

    题目传送门 /* 题意:这题就是求b+1到a的因子个数和. 数学+DP:a[i]保存i的最小因子,dp[i] = dp[i/a[i]] +1;再来一个前缀和 */ /***************** ...

  6. Codeforces Round #304 (Div. 2) D. Soldier and Number Game 数学 质因数个数

    D. Soldier and Number Game Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...

  7. codeforces水题100道 第五题 Codeforces Round #304 (Div. 2) A. Soldier and Bananas (math)

    题目链接:http://www.codeforces.com/problemset/problem/546/A题意:一个人现在有n元,它买第i根香蕉需要i*k元,问他要买w根香蕉的话,需要问他的朋友借 ...

  8. Codeforces Round #304 (Div. 2) E. Soldier and Traveling 最大流

    题目链接: http://codeforces.com/problemset/problem/546/E E. Soldier and Traveling time limit per test1 s ...

  9. Codeforces Round #304 (Div. 2) C. Soldier and Cards 水题

    C. Soldier and Cards Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/546 ...

随机推荐

  1. 使用Spring+MySql实现读写分离(二)spring整合多数据库

    紧接着上一章,因为现在做的项目还是以spring为主要的容器管理框架,所以写以下spring如何整合多个数据源. 1. 背景 我们一般应用对数据库而言都是“读多写少”,也就说对数据库读取数据的压力比较 ...

  2. spring mvc jsonp调用示例

    服务端代码:主要是返回的时候,返回值要用callback包装一下 /** * JSONP调用 * * @param request * @return */ @RequestMapping(" ...

  3. display: table-cell的实用应用

    概述 之前工作中碰到了一个垂直居中问题,最后通过查资料利用table-cell解决.于是打算总结一下有关table-cell的应用,记录下来,供以后开发时参考,相信对其他人也有用. 参考资料:我所知道 ...

  4. Node.js(day2)

    一.使用Node实现基本Apache的功能 在上一篇笔记中,我们提到如果打开一个文件需要进行一次url判断是繁琐的,我们希望我们的Node具有类似Apache这种web服务器的一个功能:将文件放到ww ...

  5. 深入分析Java I/O的工作机制 (三)网络I/O的工作机制 很详细

    3.网络I/O的工作机制 前言:数据从一台主机(服务端)发送到网络中的另一台主机(客户端)需要经过很多步骤:首先需要有相互沟通的意向.其次要有能够沟通的物理渠道(物理链路):是通过电话,还是直接面对面 ...

  6. Python中parameters与argument区别

    定义(define)一个带parameters的函数: def addition(x,y): return (x+y) 这里的x,y就是parameter 调用addition(3,4) 调用(cal ...

  7. Python You-Get (送你一个免广告的视频和音乐网站 VIP)

    You-get可以在仅仅提供URL情况下就可以实现下载视频.图片.音乐等信息.也可以通过播放器在线观看视频或听音乐,重要的是再也不用烦恼弹出的广告了,如果你想观看视频,但又不想观看广告,并且你还想把视 ...

  8. 【python】版本35 正则-非库-爬虫-读写xlw文件

    #交代:代码凌乱,新手一个,论坛都是高手,我也是鼓了很大勇气,发出来就是被批评和进步的   #需求:需要对某网站的某id子标签批量爬取,每个网页的id在xlw里,爬取完,再批量存取到这xlw里的第6行 ...

  9. 全网最详细的一个超级好用的命令行工具【Cmder】的安装之后的一些配置(图文详解)

    不多说,直接上干货! 1.修改命令提示符λ为$ 首先,我们看到 进入解压后的cmder的目录,进入vendor,打开init.bat文件. 修改第15行的代码 @prompt $E[;;40m$P$S ...

  10. com.javax.servlet 慢慢看完慢慢学完

    1.接口 RequestDispatcher 类说明 定义一个对象,从客户端接收请求,然后将它发给服务器的可用资源 (例如Servlet.CGI.HTML文件.JSP文件).Servlet引擎创 建r ...