Codeforces Round #304 (Div. 2) -----CF546
A. Soldier and Bananas
A soldier wants to buy w bananas in the shop. He has to pay k dollars for the first banana, 2k dollars for the second one and so on (in other words, he has to pay i·k dollars for the i-th banana).
He has n dollars. How many dollars does he have to borrow from his friend soldier to buy w bananas?
The first line contains three positive integers k, n, w (1 ≤ k, w ≤ 1000, 0 ≤ n ≤ 109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.
Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.
3 17 4
13
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; #define LL __int64
LL n,k,w; int main()
{
int i;
LL sum = ;
scanf("%I64d%I64d%I64d",&k,&n,&w);
for(i = ;i<=w;i++)
sum +=i*k;
if(n>=sum)
printf("0\n");
else
printf("%I64d\n",sum-n); return ;
}
B. Soldier and Badges
Colonel has n badges. He wants to give one badge to every of his n soldiers. Each badge has a coolness factor, which shows how much it's owner reached. Coolness factor can be increased by one for the cost of one coin.
For every pair of soldiers one of them should get a badge with strictly higher factor than the second one. Exact values of their factors aren't important, they just need to have distinct factors.
Colonel knows, which soldier is supposed to get which badge initially, but there is a problem. Some of badges may have the same factor of coolness. Help him and calculate how much money has to be paid for making all badges have different factors of coolness.
First line of input consists of one integer n (1 ≤ n ≤ 3000).
Next line consists of n integers ai (1 ≤ ai ≤ n), which stand for coolness factor of each badge.
Output single integer — minimum amount of coins the colonel has to pay.
4
1 3 1 4
1
5
1 2 3 2 5
2
In first sample test we can increase factor of first badge by 1.
In second sample test we can increase factors of the second and the third badge by 1.
题意:给你n堆价值,要求得到每堆价值是独一无二的,问你往每堆加多少,最少加多少。
思路:(贪心)先排序,然后以第一个为基准,后面的不大于前面的,就加加;
转载请注明出处:寻找&星空の孩子
题目链接:http://codeforces.com/contest/546/problem/B
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 5000005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+;
#define LL __int64
int n,a[];
int main()
{
int i,j,ans;
while(~scanf("%d",&n))
{
ans = ;
int sum1 = ,sum2 = ;
for(i = ; i<=n; i++)
{
scanf("%d",&a[i]);
sum1+=a[i];
}
sort(a+,a++n);
sum2 = a[];
for(i = ; i<=n; i++)
{
if(a[i] == a[i-])
a[i]++;
else if(a[i]<a[i-])
a[i] +=(a[i-]-a[i])+;
sum2+=a[i];
}
printf("%d\n",sum2-sum1);
} return ;
}
C. Soldier and Cards
Two bored soldiers are playing card war. Their card deck consists of exactly n cards, numbered from 1 to n, all values are different. They divide cards between them in some manner, it's possible that they have different number of cards. Then they play a "war"-like card game.
The rules are following. On each turn a fight happens. Each of them picks card from the top of his stack and puts on the table. The one whose card value is bigger wins this fight and takes both cards from the table to the bottom of his stack. More precisely, he first takes his opponent's card and puts to the bottom of his stack, and then he puts his card to the bottom of his stack. If after some turn one of the player's stack becomes empty, he loses and the other one wins.
You have to calculate how many fights will happen and who will win the game, or state that game won't end.
First line contains a single integer n (2 ≤ n ≤ 10), the number of cards.
Second line contains integer k1 (1 ≤ k1 ≤ n - 1), the number of the first soldier's cards. Then follow k1 integers that are the values on the first soldier's cards, from top to bottom of his stack.
Third line contains integer k2 (k1 + k2 = n), the number of the second soldier's cards. Then follow k2 integers that are the values on the second soldier's cards, from top to bottom of his stack.
All card values are different.
If somebody wins in this game, print 2 integers where the first one stands for the number of fights before end of game and the second one is 1 or 2 showing which player has won.
If the game won't end and will continue forever output - 1.
4
2 1 3
2 4 2
6 2
3
1 2
2 1 3
-1
First sample:
Second sample:
题意:给一个n(<=10)表示两人手中共有n张牌,接下来一行表示第1个人有k1张牌,k1 v1[1] v1[2]......v1[k1], v1[i]表示第i 张牌的大小,第三行表示第2个人有k2张牌,k2 v2[1] v2[2]......v2[k2], v2[i]表示第i 张牌的大小。每一轮,两人从牌顶部各出一张,谁出的牌大则两张牌归谁,放入到自己牌的底部,直到其中一个人手中没有牌出,则那个人输了。问需要多少轮,哪个人赢了。如果没有解则输出-1.
思路:(模拟题)直接模拟一下过程,主要是标记一下两个人手中牌的状态,用map<string,map<string,bool> >vist 标记一下。
转载请注明出处:寻找&星空の孩子
题目链接:http://codeforces.com/contest/546/problem/C
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 5000005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+; map<string,map<string,int> > vis;
int n;
int k1,k2;
int a[],b[],c[];
char s1[],s2[]; int main()
{
int i,j,k;
scanf("%d",&n);
scanf("%d",&k1);
for(i = ; i<k1; i++)
{
scanf("%d",&a[i]);
c[i] = a[i];
}
scanf("%d",&k2);
for(i = ; i<k2; i++)
{
scanf("%d",&b[i]);
c[k1+i] = b[i];
}
sort(c,c+k1+k2);
for(i = ; i<k1; i++)
{
for(j = ; j<k1+k2; j++)
{
if(a[i]==c[j])
s1[i] = j+'';
}
}
s1[k1] = '\0';
for(i = ; i<k2; i++)
{
for(j = ; j<k1+k2; j++)
{
if(b[i]==c[j])
s2[i] = j+'';
}
}
s2[k2] = '\0';
vis[s1][s2] = ;
int ans = ;
while(k1&&k2)
{
int p1 = s1[],p2 = s2[];
// printf("[%d %d %d %d]\n",p1,p2,k1,k2); /* printf("(1):");
for(i = 0; i<k1; i++)
printf("%c ",s1[i]);
printf("\n");
printf("(2):");
for(i = 0; i<k2; i++)
printf("%c ",s2[i]);
printf("\n");*/
if(p1>p2)
{
for(i = ; i<k2; i++)
s2[i] = s2[i+];
k2--;
for(i = ; i<k1; i++)
s1[i] = s1[i+];
s1[k1-] = p2;
s1[k1] = p1;
k1++;
s2[k2] = s1[k1] = '\0';
}
else
{
for(i = ; i<k1; i++)
s1[i] = s1[i+];
k1--;
for(i = ; i<k2; i++)
s2[i] = s2[i+];
s2[k2-] = p1;
s2[k2] = p2;
k2++;
s2[k2] = s1[k1] = '\0';
}
/* printf("(1):");
for(i = 0; i<k1; i++)
printf("%c ",s1[i]);
printf("\n");
printf("(2):");
for(i = 0; i<k2; i++)
printf("%c ",s2[i]);
printf("\n");*/
if(vis[s1][s2])
{
ans = -;
break;
}
//printf("%d %d\n",k1,k2);
ans++;
vis[s1][s2] = ;
}
printf("%d",ans);
if(ans!=-)
{
if(k1)
printf("");
else
printf("");
}
printf("\n"); return ;
}
D. Soldier and Number Game
Two soldiers are playing a game. At the beginning first of them chooses a positive integer n and gives it to the second soldier. Then the second one tries to make maximum possible number of rounds. Each round consists of choosing a positive integer x > 1, such that n is divisible by x and replacing n with n / x. When n becomes equal to 1 and there is no more possible valid moves the game is over and the score of the second soldier is equal to the number of rounds he performed.
To make the game more interesting, first soldier chooses n of form a! / b! for some positive integer a and b (a ≥ b). Here by k! we denote the factorial of k that is defined as a product of all positive integers not large than k.
What is the maximum possible score of the second soldier?
First line of input consists of single integer t (1 ≤ t ≤ 1 000 000) denoting number of games soldiers play.
Then follow t lines, each contains pair of integers a and b (1 ≤ b ≤ a ≤ 5 000 000) defining the value of n for a game.
For each game output a maximum score that the second soldier can get.
2
3 1
6 3
2
5
题意:n=a!/b!问你n的素数因子的个数。
思路:素数打表;
转载请注明出处:寻找&星空の孩子
题目链接:http://codeforces.com/contest/546/problem/D
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 5000005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+;
int p[N];
int a[N];
int prime[];
LL sum[N];
void init()
{ for(int i=; i<; ++i)
prime[i] = INF;
prime[] = ;
int num = ;
for(int i=; i<; ++i)
{
int x = ;
while(i%prime[x] && prime[x] <= i) ++x;
if( !(i%prime[x]) )
a[i] = prime[x];
else
{
prime[++num] = i;
a[i] = i;
}
}
a[] =;
for(int i=; i< N; ++i)
{
int x = ;
while(i%prime[x] && prime[x] <= i) ++x;
if( !(i%prime[x]) )
a[i] = prime[x];
else
a[i] = i;
}
p[] = ;
for(int i=; i <N; ++i)
p[i] = p[i/a[i]] + ;
}
int main()
{
int i,j,k;
init();
sum[] = ;
// printf("%d\n",p[4]);
for(i = ; i<=; i++)
{
sum[i] = sum[i-]+p[i];
// printf("%d %I64d\n",i,sum[i]);
}
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&i,&j);
// printf("%d %d %I64d %I64d\n",i,j+1,sum[i],sum[j+1]);
if(i == j)
printf("0\n");
else
printf("%I64d\n",sum[i]-sum[j]);
} return ;
}
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 5000005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+;
int p[N];
bool v[N];
int a[N];
int prime[N/];
LL sum[N];
void init()
{
for(int i=; i<N; ++i)
a[i] = i;
int num=-;
for(int i=; i<N; ++i)
{
if(!v[i]) prime[++num] = i;
for(int j=; j<=num && i*prime[j] < N; ++j)
{
int t = i*prime[j];
v[t] =;
if(a[t] > prime[j]) a[t] = prime[j];
if(i%prime[j] == ) break;
}
}
p[] = ;
for(int i=; i <N; ++i)
p[i] = p[i/a[i]] + ;
}
int main()
{
int i,j,k;
init();
sum[] = ;
for(i = ; i<=; i++)
{
sum[i] = sum[i-]+p[i];
}
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&i,&j);
if(i == j)
printf("0\n");
else
printf("%I64d\n",sum[i]-sum[j]);
} return ;
}
E. Soldier and Traveling
In the country there are n cities and m bidirectional roads between them. Each city has an army. Army of the i-th city consists of aisoldiers. Now soldiers roam. After roaming each soldier has to either stay in his city or to go to the one of neighboring cities by at moving along at most one road.
Check if is it possible that after roaming there will be exactly bi soldiers in the i-th city.
First line of input consists of two integers n and m (1 ≤ n ≤ 100, 0 ≤ m ≤ 200).
Next line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 100).
Next line contains n integers b1, b2, ..., bn (0 ≤ bi ≤ 100).
Then m lines follow, each of them consists of two integers p and q (1 ≤ p, q ≤ n, p ≠ q) denoting that there is an undirected road between cities p and q.
It is guaranteed that there is at most one road between each pair of cities.
If the conditions can not be met output single word "NO".
Otherwise output word "YES" and then n lines, each of them consisting of n integers. Number in the i-th line in the j-th column should denote how many soldiers should road from city i to city j (if i ≠ j) or how many soldiers should stay in city i (if i = j).
If there are several possible answers you may output any of them.
4 4
1 2 6 3
3 5 3 1
1 2
2 3
3 4
4 2
YES
1 0 0 0
2 0 0 0
0 5 1 0
0 0 2 1
2 0
1 2
2 1
NO
题意:给你一张无向图,每个点有一定数量的人,通过移动可以去邻接点(但是只能移动一次)问你是否能从初始状态移动到目标状态;
思路:网络流+最大流;
转载请注明出处:寻找&星空の孩子
题目链接:http://codeforces.com/contest/546/problem/E
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define captype int const int MAXN = ; //点的总数
const int MAXM = ; //边的总数
const int INF = <<;
struct EDG{
int to,next;
captype cap,flow;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN]; //每种距离(或可认为是高度)点的个数
int dis[MAXN]; //每个点到终点eNode 的最短距离
int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN];
int mapt[][]; void init(){
eid=;
memset(head,-,sizeof(head));
memset(mapt,,sizeof(mapt));
}
//有向边 三个参数,无向边4个参数
void addEdg(int u,int v,captype c,captype rc=){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; edg[eid].flow=; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; edg[eid].flow=; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,,sizeof(gap));
memset(dis,,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -;
gap[]=n;
captype ans=; //最大流
int u=sNode;
while(dis[sNode]<n){ //判断从sNode点有没有流向下一个相邻的点
if(u==eNode){ //找到一条可增流的路
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-; i=pre[edg[i^].to]) //从这条可增流的路找到最多可增的流量Min
if(Min>edg[i].cap-edg[i].flow){
Min=edg[i].cap-edg[i].flow;
inser=i;
}
for(int i=pre[u]; i!=-; i=pre[edg[i^].to]){ edg[i].flow+=Min;
edg[i^].flow-=Min; //可回流的边的流量 if(edg[i].to==eNode||edg[i].to==sNode||edg[i^].to==eNode||edg[i^].to==sNode)
continue;
if(edg[i].cap>){
int tu, tv;
tu=edg[i^].to; tv=edg[i].to-(n-)/;
mapt[tu][tv]+=Min;
}
else{
int tu, tv;
tu=edg[i].to; tv=edg[i^].to-(n-)/;
mapt[tu][tv]-=Min;
} }
ans+=Min;
u=edg[inser^].to;
continue;
}
bool flag = false; //判断能否从u点出发可往相邻点流
int v;
for(int i=cur[u]; i!=-; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap-edg[i].flow> && dis[u]==dis[v]+){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
//如果上面没有找到一个可流的相邻点,则改变出发点u的距离(也可认为是高度)为相邻可流点的最小距离+1
int Mind= n;
for(int i=head[u]; i!=-; i=edg[i].next)
if(edg[i].cap-edg[i].flow> && Mind>dis[edg[i].to]){
Mind=dis[edg[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==) return ans; //当dis[u]这种距离的点没有了,也就不可能从源点出发找到一条增广流路径
//因为汇点到当前点的距离只有一种,那么从源点到汇点必然经过当前点,然而当前点又没能找到可流向的点,那么必然断流
dis[u]=Mind+;//如果找到一个可流的相邻点,则距离为相邻点距离+1,如果找不到,则为n+1
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^].to; //退一条边
}
return ans;
}
int main(){
int n,m ,s , t , u,v,c[],tc;
while(scanf("%d%d",&n,&m)>){
init();
s=;
t=*n+;
int ans=;
for(int i=; i<=n; i++){
scanf("%d",&c[i]);
ans+=c[i];
addEdg(s,i,c[i]);
addEdg(i,i+n,c[i]);
}
int sum=;
for(int i=; i<=n; i++)
{
scanf("%d",&tc); sum+=tc;
addEdg(i+n,t,tc);
}
while(m--){
scanf("%d%d",&u,&v);
addEdg(u,v+n,c[u]);
addEdg(v,u+n,c[v]);
}
if(ans!=sum){
printf("NO\n"); continue;
}
ans -= maxFlow_sap(s,t,t+);
if(ans==){
printf("YES\n");
for(int i=; i<=n; i++){
for(int j=; j<n; j++)
printf("%d ",mapt[i][j]);
printf("%d\n",mapt[i][n]);
}
}
else
printf("NO\n");
}
}
Codeforces Round #304 (Div. 2) -----CF546的更多相关文章
- DP+埃氏筛法 Codeforces Round #304 (Div. 2) D. Soldier and Number Game
题目传送门 /* 题意:b+1,b+2,...,a 所有数的素数个数和 DP+埃氏筛法:dp[i] 记录i的素数个数和,若i是素数,则为1:否则它可以从一个数乘以素数递推过来 最后改为i之前所有素数个 ...
- queue+模拟 Codeforces Round #304 (Div. 2) C. Soldier and Cards
题目传送门 /* 题意:两堆牌,每次拿出上面的牌做比较,大的一方收走两张牌,直到一方没有牌 queue容器:模拟上述过程,当次数达到最大值时判断为-1 */ #include <cstdio&g ...
- 贪心 Codeforces Round #304 (Div. 2) B. Soldier and Badges
题目传送门 /* 题意:问最少增加多少值使变成递增序列 贪心:排序后,每一个值改为前一个值+1,有可能a[i-1] = a[i] + 1,所以要 >= */ #include <cstdi ...
- 水题 Codeforces Round #304 (Div. 2) A. Soldier and Bananas
题目传送门 /* 水题:ans = (1+2+3+...+n) * k - n,开long long */ #include <cstdio> #include <algorithm ...
- 数学+DP Codeforces Round #304 (Div. 2) D. Soldier and Number Game
题目传送门 /* 题意:这题就是求b+1到a的因子个数和. 数学+DP:a[i]保存i的最小因子,dp[i] = dp[i/a[i]] +1;再来一个前缀和 */ /***************** ...
- Codeforces Round #304 (Div. 2) D. Soldier and Number Game 数学 质因数个数
D. Soldier and Number Game Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...
- codeforces水题100道 第五题 Codeforces Round #304 (Div. 2) A. Soldier and Bananas (math)
题目链接:http://www.codeforces.com/problemset/problem/546/A题意:一个人现在有n元,它买第i根香蕉需要i*k元,问他要买w根香蕉的话,需要问他的朋友借 ...
- Codeforces Round #304 (Div. 2) E. Soldier and Traveling 最大流
题目链接: http://codeforces.com/problemset/problem/546/E E. Soldier and Traveling time limit per test1 s ...
- Codeforces Round #304 (Div. 2) C. Soldier and Cards 水题
C. Soldier and Cards Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/546 ...
随机推荐
- java web spring 发送邮件
package com.ws.common.mail; import java.io.File; import javax.mail.internet.MimeMessage; import java ...
- QEMU KVM libvirt手册(4) – images
RAW raw是默认的格式,格式简单,容易转换为其他的格式.需要文件系统的支持才能支持sparse file 创建image # qemu-img create -f raw flat.img 10G ...
- 【腾讯Bugly干货分享】Android 插件技术实战总结
本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:https://mp.weixin.qq.com/s/1p5Y0f5XdVXN2EZYT0AM_A 前言 安 ...
- 【高速接口-RapidIO】3、RapidIO串行物理层的包传输过程
一.引言 前几篇文章已经谈到RapidIO的协议,串行物理层与控制符号. RapidIO协议包括读事务(NREAD),写事务(NWRITE),流写事务(SWRITE),有响应的写事务(NWRITE_R ...
- 腾讯优秀 SDK 汇总
1. 热修复 -- Tinker 项目地址:http://www.tinkerpatch.com/ SDK地址:https://github.com/Tencent/tinker 集成参考文档: ht ...
- Java核心技术卷一基础知识-第3章-Java的基本程序设计结构-读书笔记
第3章 Java的基本程序设计结构 本章内容: 一个简单的Java应用程序 字符串 注释 输入输出 数据类型 控制流 变量 大数值 运算符 数组 本章主要讲述程序设计相关的基本概念(如数据类型.分支以 ...
- 第42节:Java知识点回顾复习
Java介绍 Java是一门面向对象的程序设计的编程语言,在1995年,sun公司发布了Java这门编程语言,有咖啡的名称,是当时灵机一动的想法.在2010年的时候被Oracle公司收购了,目前jdk ...
- java,让debug出色
虽然我们不喜欢bug,但是bug永远都存在.虽然我们牛逼,但是仍然有不知道的东西,解决不了的问题.so,还得借助工具,让咱效率提起来扛扛的.解决的问题如是:由于某种原因,其他系统发送的mq,我这边说没 ...
- Spark从入门到精通(一)
什么是Spark 大数据计算框架 离线批处理 大数据体系架构图(Spark) Spark包含了大数据领域常见的各种计算框架:比如Spark Core用于离线计算,Spark SQL用于交互式查询,Sp ...
- Spring Boot 返回 XML 数据,一分钟搞定!
Spring Boot 返回 XML 数据,前提必须已经搭建了 Spring Boot 项目,所以这一块代码就不贴了,可以点击查看之前分享的 Spring Boot 返回 JSON 数据,一分钟搞定! ...