这里利用Nathan Yau所著的《鲜活的数据:数据可视化指南》一书中的数据,学习画图。

数据地址:http://datasets.flowingdata.com/us-postage.csv

准备工作:先导入matplotlib和pandas,用pandas读取csv文件,然后创建一个图像和一个坐标轴

import pandas as pd
from matplotlib import pyplot as plt
postage=pd.read_csv(r"http://datasets.flowingdata.com/us-postage.csv")
fig,ax=plt.subplots()

先来看看这个数据文件:

   Year  Price
0 1991 0.29
1 1995 0.32
2 1999 0.33
3 2001 0.34
4 2002 0.37
5 2006 0.39
6 2007 0.41
7 2008 0.42
8 2009 0.44
9 2010 0.44

这个数据很简单,展示的是从1991年-2010年美国邮费的变化。

让我们来画一个阶梯图,展现邮费的变化过程。

阶梯图: ax.step(x,y)

代码如下:

import pandas as pd
from matplotlib import pyplot as plt
postage=pd.read_csv(r"http://datasets.flowingdata.com/us-postage.csv")
fig,ax=plt.subplots(figsize=(10,4)) ax.step(postage["Year"],postage["Price"],where='post')
ax.set_title("US Postage Fee") #设置标题
ax.set_xticks([i for i in postage["Year"]]) #设置x轴刻度
ax.set_yticks([]) #去除y轴刻度
#去除边框
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["right"].set_visible(False)
#添加文字注释
for i,j in zip(postage["Year"],postage["Price"]):
ax.text(x=i,y=j+0.003,s=j)
fig.tight_layout() plt.show()

图像如下:

Matplotlib学习---用matplotlib画阶梯图(step plot)的更多相关文章

  1. Matplotlib学习---用seaborn画矩阵图(pair plot)

    矩阵图非常有用,人们经常用它来查看多个变量之间的联系. 下面用著名的鸢尾花数据来画一个矩阵图.从sklearn导入鸢尾花数据,然后将其转换成pandas的DataFrame类型,最后用seaborn画 ...

  2. Matplotlib学习---用matplotlib画箱线图(boxplot)

    箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分 ...

  3. Matplotlib学习---用matplotlib画直方图/密度图(histogram, density plot)

    直方图用于展示数据的分布情况,x轴是一个连续变量,y轴是该变量的频次. 下面利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://d ...

  4. Matplotlib学习---用matplotlib画折线图(line chart)

    这里利用Jake Vanderplas所著的<Python数据科学手册>一书中的数据,学习画图. 数据地址:https://raw.githubusercontent.com/jakevd ...

  5. Matplotlib学习---用matplotlib画雷达图(radar chart)

    雷达图常用于对多项指标的全面分析.例如:HR想要比较两个应聘者的综合素质,用雷达图分别画出来,就可以进行直观的比较. 用Matplotlib画雷达图需要使用极坐标体系,可点击此链接,查看对极坐标体系的 ...

  6. Matplotlib学习---用matplotlib画误差线(errorbar)

    误差线用于显示数据的不确定程度,误差一般使用标准差(Standard Deviation)或标准误差(Standard Error). 标准差(SD):是方差的算术平方根.如果是总体标准差,那么用σ表 ...

  7. Matplotlib学习---用matplotlib和sklearn画拟合线(line of best fit)

    在机器学习中,经常要用scikit-learn里面的线性回归模型来对数据进行拟合,进而找到数据的规律,从而达到预测的目的.用图像展示数据及其拟合线可以非常直观地看出拟合线与数据的匹配程度,同时也可用于 ...

  8. Matplotlib学习---用matplotlib画面积图(area chart)

    这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://book.flowingdata.com/ch05/data/us-pop ...

  9. Matplotlib学习---用matplotlib画热图(heatmap)

    这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/ppg2008.csv ...

随机推荐

  1. flask实现子域名

    什么是子域名? 子域名,类似于xxx.douban.com的形式,如book.douban.com,music.douban.com,movie.douban.com等 用flask怎么实现子域名? ...

  2. Git简易的命令入门

    Git 全局设置: git config --global user.name "kszsa" git config --global user.email "duyon ...

  3. Python遇到问题总结

    1.list的集合 循环删除一个list数据时,会遇到一丢丢问题,详情看Python的list循环遍历中,删除数据的正确方法 但是,里面说的要反转一下list集合,可以用a[::-1]这种方法. &g ...

  4. sql面试学到新内容

    1.事物的保存点 MYSQL可以让我们对事务进行部分回滚,就是在事务里调用SAVEPOINT语句来设置一些命名标记.如果想要回滚到那个标记点位置,需要使用ROLLBACK语句来指定哪个保存点. mys ...

  5. Python-正则复习-56

    # 正则表达式# 字符组 [字符]# 元字符 # \w \d \s # \W \D \S # . 除了换行符以外的任意字符 # \n \t # \b # ^ $ 匹配字符串的开始和结束 # () 分组 ...

  6. PS制作恐怖逼真滴血文字

    序言:各位同学们好,今天给大家带来一例恐怖逼真滴血文字效果的制作教程,本人比较喜欢看恐怖游戏,是看不是玩,然后就突发奇想地做了这件作品,最后的效果我很喜欢,而且制作起来难度并不大,在此分享自己在作图时 ...

  7. C#使用ES

    C#如何使用ES Elasticsearch简介 Elasticsearch (ES)是一个基于Apache Lucene(TM)的开源搜索引擎,无论在开源还是专有领域,Lucene可以被认为是迄今为 ...

  8. 理解根目录,classpath, getClass().getResourceAsStream和getClass().getClassLoader().getResourceAsStream的区别

    一: 理解根目录 <value>classpath*:/application.properties</value> <value>classpath:/appli ...

  9. vue二次实战(一)

    创建好项目(npm run dev 运行项目:先不用运行,或先运行再关闭) 先安装axios! npm install axios 然后! npm install --save axios vue-a ...

  10. jQuery ajax解析xml文件demo

    解析xml文件,然后将城市列表还原到下拉列表框中:当选择下拉列表框时,在对应的文本框中显示该城市信息. 前端代码: <!doctype html> <html> <hea ...