MT【293】拐点处切线
(2018浙江高考压轴题)
已知函数$f(x)=\sqrt{x}-\ln x.$
(2)若$a\le 3-4\ln 2,$证明:对于任意$k>0$,直线$y=kx+a$ 与曲线$y=f(x)$有唯一的公共点.

分析:等价于$k=\dfrac{\sqrt{x}-\ln x-a}{x}$有唯一解.记$g(x)=\dfrac{\sqrt{x}-\ln x-a}{x}$,则$g^{'}(x)=\dfrac{\ln x-\dfrac{\sqrt{x}}{2}-1+a}{x^2}$,
记$h(x)=\ln x-\frac{\sqrt{x}}{2}-1+a$,则$h^{'}(x)=\dfrac{4-\sqrt{x}}{4x}$,故$h(x)$在$(0,16)$单调递减$(16,+\infty)$单调递增.
所以$h(x)_{max}=h(16)=\ln(16)-3+a\le0$,所以$g^{'}(x)<0$,即$g(x)$单调递减.又$\lim\limits_{x\rightarrow0}(\dfrac{\sqrt{x}-\ln x-a}{x})= +\infty,\lim\limits_{x\rightarrow+\infty}(\dfrac{\sqrt{x}-\ln x-a}{x})=0$,故$k>0$时$y=k$与$g(x)=\dfrac{\sqrt{x}-\ln x-a}{x}$有且只有一个交点.
注:这里$a\le 3-4\ln 2$的条件可以考虑$f(x)=\sqrt{x}-\ln x.$的二阶导数的拐点$f^{''}(x)=-\dfrac{1}{4}x^{\frac{3}{2}}+x^{-2}=0$得拐点为$x=16$,求拐点处的切线方程:$y=\dfrac{1}{16}x+3-4\ln2$.
考虑$f(x)$的图像,当$a\le3-4\ln2$时,对于任意$k>0$,直线$y=kx+a$ 与曲线$y=f(x)$有唯一的公共点.

练习:若对任意$a>0$,函数$f(x)=x^3+ax^2+bx+1$在开区间$(-\infty,0)$内有且仅有一个零点,则实数$b$的取值范围_____
提示:只需考虑$y=ax+b$与$y=-x^2-\dfrac{1}{x}$图像交点,考虑拐点处切线方程:$y=3x+3$分析$y=-x^2-\dfrac{1}{x}$图像,易得$b\le3$
注:无非就是$b\ge3$或者$b\le3$,从图像中看若$b\ge3$,可以取$b$足够大,显然当$a>0$时可以有两个交点,故只有一个交点时$b\le3$

MT【293】拐点处切线的更多相关文章
- MT【25】切线不等式原理及例题
评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.
- NOI前的考试日志
4.14 网络流专项测试 先看T1,不会,看T2,仙人掌???wtf??弃疗.看T3,貌似最可做了,然后开始刚,刚了30min无果,打了50分暴力,然后接着去看T1,把序列差分了一下,推了会式子,发现 ...
- OpenGL光照计算中法线矩阵原理及推到过程
问题起源 在计算漫反射关照时,需要用到法线,通过法线和光线的点乘值,计算漫反射的产生的光线强度,所以需要从顶点着色器中将法线数据传递到片源着色器中,但是片源着色器中的顶点坐标是经过了模型矩阵变化过的世 ...
- 机器学习实战4:Adaboost提升:病马实例+非均衡分类问题
Adaboost提升算法是机器学习中很好用的两个算法之一,另一个是SVM支持向量机:机器学习面试中也会经常提问到Adaboost的一些原理:另外本文还介绍了一下非平衡分类问题的解决方案,这个问题在面试 ...
- HTML5 十大新特性(四)——Canvas绘图
H5引入了canvas标签,默认是一个300*150的inline-block.canvas的宽高只能用它自身的width和height属性来指定,而不能使用css样式中的width.height. ...
- 单向和双向tvs管
tvs管器件按极性可分为单极性和双极性两种,即单向tvs管和双向tvs管. 单向tvs管保护器件仅能对正脉冲或者负脉冲进行防护,而双向tvs管保护器件一端接要保护的线路,一端接地,无论来自反向还 ...
- 如何利用百度地图JSAPI画带箭头的线?
百度地图JSAPI提供两种绘制多折线的方式,一种是已知多折线经纬度坐标串通过AddOverlay接口进行添加:另一种是通过在地图上鼠标单击进行绘制(鼠标绘制工具条库).目前这两种方式只能绘制多折线,并 ...
- 1038: [ZJOI2008]瞭望塔
半平面交. 半平面指的就是一条直线的左面(也不知道对不对) 半平面交就是指很多半平面的公共部分. 这道题的解一定在各条直线的半平面交中. 而且瞭望塔只可能在各个点或者半平面交折线的拐点处. 求出半平面 ...
- UVA_303_Pipe_(计算几何基础)
描述 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=5&page ...
随机推荐
- UVA -580 组合数学
#include<iostream> #include<stdio.h> #include<string.h> #include<algorithm> ...
- Python—包介绍
包(Package) 当你的模块文件越来越多,就需要对模块文件进行划分,比如把负责跟数据库交互的都放一个文件夹,把与页面交互相关的放一个文件夹, . └── my_proj ├── crm #代码目录 ...
- Factors of Factorial AtCoder - 2286 (N的阶乘的因子个数)(数论)
Problem Statement You are given an integer N. Find the number of the positive divisors of N!, modulo ...
- 亲测可以永久破解2018版本的pycharm
pycharm是很强大的开发工具,但是每次注册着实让人头疼.网络上很多注册码.注册服务器等等.但都只是一年或者不能用:为次有如下解决方案.亲测有效!!! 如果想让pycharm永久被激活,比如截止日到 ...
- Django 2.0 学习
Django django是基于MTV结构的WEB框架 Model 数据库操作 Template 模版文件 View 业务处理 在Python中安装django 2.0 1 直接安装 pip inst ...
- html总结:float实现span和input输入框同行
例: <input type="text" name="ytdwname" value="<%=user.getYtdwname() %& ...
- 【问题解决方案】之 关于某江加密视频swf专用播放器仍无法播放的问题
前言: 从pt上下载了一些语言学习的视频之后一直打不开,百度谷歌了若干种方法仍然无解.无奈放弃. 某日从百度知道里又看到一个方法,试了一下,居然灵了.呜呼哀哉.赶紧记下来. 原方法链接:https:/ ...
- Linux 典型应用之WebServer 安装和配置
Apache的基本操作 安装 yum install httpd 启动 service httpd start 在浏览器中输入以下Ip 发现无法访问 http://192.168.1.109/ 输入 ...
- c++ 单引号"字符串" 用法
__int64 flag; //赋值超过4字节,编译错误 //flag = 'ABCDE'; //低于4字节,高位补 0 //flag = 'BCDE'; flag = 'A' << 24 ...
- IdentityServer4【Introduction】之概括
The Big Picture 大多数现代应用看起来都像下面的样子: 大多数的交互是下面这样: 浏览器与web应用之间的通信 web应用和web APIs之间的通信(这两者有时是独立的,有时是有用户参 ...