题意

链接

Sol

Orz yyb

一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到。。。

正解是先设\(g(n)\)表示\(n\)个点的无向图个数,这个方案是\(2^{\frac{i(i-1)}{2}}\)(也就是考虑每条边选不选)

考虑如何得到\(g\)

\[g(n) = \sum_{i=0}^n C_{n-1}^{i-1}f(i) g(n-i)
\]

直接将\(2^{\frac{n(n-1)}{2}}\)带入然后化简一下可以得到这个式子

\[\frac{2^{C_n^2}}{(n-1)!} = \sum_{i=1}^n \frac{f(i)}{(i-1)!} \frac{2^{C_{n-i}^2}}{(n-i)!}
\]

然后就可以多项式求逆啦。

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 2e6 + 10, INF = 1e9 + 1;
const double eps = 1e-9, pi = acos(-1);
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, a[MAXN], b[MAXN], c[MAXN], d[MAXN], fac[MAXN], ifac[MAXN];
namespace Poly {
int rev[MAXN], GPow[MAXN], A[MAXN], B[MAXN], C[MAXN], lim, INV2;
const int G = 3, mod = 1004535809, mod2 = 1004535808;
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
int fp(int a, int p, int P = mod) {
int base = 1;
for(; p > 0; p >>= 1, a = 1ll * a * a % P) if(p & 1) base = 1ll * base * a % P;
return base;
}
int inv(int x) {
return fp(x, mod - 2);
}
int GetLen(int x) {
int lim = 1;
while(lim <= x) lim <<= 1;
return lim;
}
int GetOrigin(int x) {//¼ÆËãÔ­¸ù
static int q[MAXN]; int tot = 0, tp = x - 1;
for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;}
if(tp > 1) q[++tot] = tp;
for(int i = 2, j; i <= x - 1; i++) {
for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
if(j == tot + 1) return i;
}
return -1;
}
void Init(/*int P,*/ int Lim) {
INV2 = fp(2, mod - 2);
for(int i = 1; i <= Lim; i++) GPow[i] = fp(G, (mod - 1) / i);
}
void NTT(int *A, int lim, int opt) {
int len = 0; for(int N = 1; N < lim; N <<= 1) ++len;
for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(A[i], A[rev[i]]);
for(int mid = 1; mid < lim; mid <<= 1) {
int Wn = GPow[mid << 1];
for(int i = 0; i < lim; i += (mid << 1)) {
for(int j = 0, w = 1; j < mid; j++, w = mul(w, Wn)) {
int x = A[i + j], y = mul(w, A[i + j + mid]);
A[i + j] = add(x, y), A[i + j + mid] = add(x, -y);
}
}
}
if(opt == -1) {
reverse(A + 1, A + lim);
int Inv = fp(lim, mod - 2);
for(int i = 0; i <= lim; i++) mul2(A[i], Inv);
}
}
void Mul(int *a, int *b, int N, int M) {
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
int lim = 1, len = 0;
while(lim <= N + M) len++, lim <<= 1;
for(int i = 0; i <= N; i++) A[i] = a[i];
for(int i = 0; i <= M; i++) B[i] = b[i];
NTT(A, lim, 1); NTT(B, lim, 1);
for(int i = 0; i <= lim; i++) B[i] = mul(B[i], A[i]);
NTT(B, lim, -1);
for(int i = 0; i <= N + M; i++) b[i] = B[i];
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
void Inv(int *a, int *b, int len) {//B1 = 2B - A1 * B^2
if(len == 1) {b[0] = fp(a[0], mod - 2); return ;}
Inv(a, b, len >> 1);
for(int i = 0; i < len; i++) A[i] = a[i], B[i] = b[i];
NTT(A, len << 1, 1); NTT(B, len << 1, 1);
for(int i = 0; i < (len << 1); i++) mul2(A[i], mul(B[i], B[i]));
NTT(A, len << 1, -1);
for(int i = 0; i < len; i++) add2(b[i], add(b[i], -A[i]));
for(int i = 0; i < (len << 1); i++) A[i] = B[i] = 0;
}
void Dao(int *a, int *b, int len) {
for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]); b[len - 1] = 0;
}
void Ji(int *a, int *b, int len) {
for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); b[0] = 0;
}
void Ln(int *a, int *b, int len) {//G(A) = \frac{A}{A'} qiudao zhihou jifen
static int A[MAXN], B[MAXN];
Dao(a, A, len);
Inv(a, B, len);
NTT(A, len << 1, 1); NTT(B, len << 1, 1);
for(int i = 0; i < (len << 1); i++) B[i] = mul(A[i], B[i]);
NTT(B, len << 1, -1);
Ji(B, b, len << 1);
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
void Exp(int *a, int *b, int len) {//F(x) = F_0 (1 - lnF_0 + A) but code ..why....
if(len == 1) return (void) (b[0] = 1);
Exp(a, b, len >> 1); Ln(b, C, len);
C[0] = add(a[0] + 1, -C[0]);
for(int i = 1; i < len; i++) C[i] = add(a[i], -C[i]);
NTT(C, len << 1, 1); NTT(b, len << 1, 1);
for(int i = 0; i < (len << 1); i++) mul2(b[i], C[i]);
NTT(b, len << 1, -1);
for(int i = len; i < (len << 1); i++) C[i] = b[i] = 0;
}
void Sqrt(int *a, int *b, int len) {
static int B[MAXN];
Ln(a, B, len);
for(int i = 0; i < len; i++) B[i] = mul(B[i], INV2);
Exp(B, b, len);
}
};
using namespace Poly; signed main() {
N = read(); int Lim = GetLen(N); Init(4 * Lim);
fac[0] = 1;
for(int i = 1; i <= N; i++) fac[i] = mul(i, fac[i - 1]);
ifac[N] = fp(fac[N], mod - 2);
for(int i = N; i >= 1; i--) ifac[i - 1] = mul(i, ifac[i]);
for(int i = N; i >= 1; i--) {
int tmp;
if(i & 1) tmp = fp(2, 1ll * ((i - 1) / 2) * i % mod2);
else tmp = fp(2, 1ll * (i / 2) * (i - 1) % mod2);
a[i] = mul(tmp, ifac[i - 1]),
b[i] = mul(tmp, ifac[i]);
}
b[0] = 1;
Inv(b, c, Lim);
Mul(a, c, Lim, Lim);
cout << mul(c[N], fac[N - 1]);
return 0;
}

洛谷P4841 城市规划(生成函数 多项式求逆)的更多相关文章

  1. 洛谷P4841 城市规划(多项式求逆)

    传送门 这题太珂怕了……如果是我的话完全想不出来…… 题解 //minamoto #include<iostream> #include<cstdio> #include< ...

  2. 洛谷P4841 城市规划 [生成函数,NTT]

    传送门 题意简述:求\(n​\)个点的简单无向连通图的数量\(\mod \;1004535809​\),\(n \leq 130000​\) 经典好题呀!这里介绍两种做法:多项式求逆.多项式求对数 先 ...

  3. [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)

    城市规划 时间限制:40s      空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...

  4. 洛谷P4721 【模板】分治 FFT(生成函数+多项式求逆)

    传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x) ...

  5. 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂

    题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...

  6. 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)

    传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...

  7. Luogu5162 WD与积木(生成函数+多项式求逆)

    显然的做法是求出斯特林数,但没有什么优化空间. 考虑一种暴力dp,即设f[i]为i块积木的所有方案层数之和,g[i]为i块积木的方案数.转移时枚举第一层是哪些积木,于是有f[i]=g[i]+ΣC(i, ...

  8. 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根

    首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...

  9. COGS 2259 异化多肽 —— 生成函数+多项式求逆

    题目:http://cogs.pro:8080/cogs/problem/problem.php?pid=2259 如果构造生成函数是许多个 \( (1+x^{k}+x^{2k}+...) \) 相乘 ...

随机推荐

  1. 第65节:Java后端的学习之Spring基础

    Java后端的学习之Spring基础 如果要学习spring,那么什么是框架,spring又是什么呢?学习spring中的ioc和bean,以及aop,IOC,Bean,AOP,(配置,注解,api) ...

  2. Kali学习笔记9:端口扫描详解(上)

    UDP端口扫描: 原理:回应ICMP不可达,代表端口关闭:没有回应,端口开启 建议了解应用层的UDP包头结构,构建对应的UDP数据包用来提高准确度 另外:所有的扫描都存在误判情况 我们用Scapy写个 ...

  3. [Swift]扩展String类:Base64的编码和解码

    扩展方式1: extension String { //Base64编码 func encodBase64() -> String? { if let data = self.data(usin ...

  4. 嘿!我用python帮我干这些事

    python 无疑是当下火上天的语言,但是我们又不拿来工作,那么能拿来干啥呢?我是这么干的. 1. 平时工作开发用不上,就当个计算器吧! python # 加减乘除 >>> (3 + ...

  5. 数据结构图解(递归,二分,AVL,红黑树,伸展树,哈希表,字典树,B树,B+树)

    递归反转 二分查找 AVL树 AVL简单的理解,如图所示,底部节点为1,不断往上到根节点,数字不断累加. 观察每个节点数字,随意选个节点A,会发现A节点的左子树节点或右子树节点末尾,数到A节点距离之差 ...

  6. 3,linux入门到上手-文件权限管理与配置

    linux入门-文件权限管理与配置 一.关于linux的操作命令一般格式如下: 1,一行指令中第一个输入的部分绝对是"指令(command)"或"可可执行文件案(例如批次 ...

  7. iReport 5.6.0 PDF导出中文不显示问题 解决方案

    问题描述 iReport 5.6.0 PDF格式导出,中文不显示. 报错信息如下: Error exporting print... Could not load the following font ...

  8. 解决 Chrome 下载不了东西 失败 - 已屏蔽 的问题

    或许你怎么也想不到是IE的问题 由于IE的安全设定问题 但是这个锅 确实不应该是IE来背. 因为我IE下载都没出现这个问题. 解决方法是这样的: IE>Internet选项>安全>自 ...

  9. Go语言下的线程模型

    阅读Go并发编程对go语言线程模型的笔记,解释的非常到,好记性不如烂笔头,忘记的时候回来翻一番,在此做下笔记. Go语言的线程实现模型,又3个必知的核心元素,他们支撑起了这个线程实现模型的主要框架: ...

  10. Netty源码分析(一):Netty总览

    作为当前最流行的网络通信框架,Netty在互联网领域大放异彩,本系列将详细介绍Netty(4.1.22.Final). 代码事例 服务端 public final class EchoServer { ...