题解-PKUWC2018 随机算法
Problem
题意简述:给定\(n\)个点的无向图,给定求最大独立集的近似算法:随机排列\(1\cdots n\),按照该排列顺序贪心构造最大独立集(即对每个点能加入独立集就加),求算法正确率
\(n\leq 20,m\leq \binom n2\)
Solution
暴力枚举应有\(10pts\)(\(n\leq 9)\)
当前状态集合为\(S\),\(0,1,2\)分别表示没访问到、访问到且在最大独立集内、访问到且未在最大独立集内,每次枚举下一个访问的节点,复杂度\(O(n3^n)\),应有\(30pts\)(\(n\leq 13\))
然而我并没有想到\(70pts\)(\(n\leq 17\))的做法,可能是\(O(n^22^n)\)?
一种玄学暴力,枚举所有最大独立集,然后\(f[S]\)来dp转移,最坏复杂度\(O(2^n\cdot 2^nn)\),但由于一个图的最大独立集没有多少,所以应该能拿一个很高的分(据学长说这个算法好像可以\(100pts\))
算了,还是来想点正经的,预估复杂度为\(O(n2^n)\),所以大致是设答案为\(f[S]\),然后枚举点进行转移
接着\(30pts\)做法,要将状态数降至\(2^n\),需要将三种状态中合并两种……然而到这我就不会了qwq
把范围展开一点,\(f[S]\)表最大独立集与与其相连的节点集合(独立集辐射范围)为\(S\)时的最大独立集大小,用\(g[S]\)计数,最终\(g[U]\)即为答案
转移就相当于每次在\(S\)里刨掉某个点与与其相连的点,好像就没了?(由于算的是期望且每个状态的步数不同,处理完每个\(g(T)\)后要将\(g(T)\)除以\(|T|\))
upd:看了题解后发现好像\(70pts\)就是我的做法再加个状态表示\(S\)的最大独立集大小(而且更显而易见),但由于每个\(S\)的最大独立集大小唯一,所以不需要这么设置
看了题解后发现有个方程更容易想,设\(S\)为独立集辐射范围(就是上面的定义),设\(w\)为当前枚举点的控制范围:
\]
Code
#include <cstdio>
const int N=21,M=1<<N,p=998244353;
int d[N],bin[N],inv[N],f[M],g[M];
int n,m,lim;
inline int pls(int&x,int y){x=x+y<p?x+y:x+y-p;}
int main(){
scanf("%d%d",&n,&m);lim=1<<n;
d[1]=bin[1]=inv[0]=inv[1]=1;
for(int i=2;i<=n;++i){
d[i]=bin[i]=bin[i-1]<<1;
inv[i]=1ll*(p-p/i)*inv[p%i]%p;
}
for(int i=m,x,y;i;--i){
scanf("%d%d",&x,&y);
d[x]|=bin[y];
d[y]|=bin[x];
}
g[0]=1;
for(int S=1,tt,s;S<lim;++S){
tt=0;
for(int i=1;i<=n;++i)
if(S&bin[i]){
++tt,s=S&(~d[i]);
if(f[S]<f[s]+1)f[S]=f[s]+1,g[S]=0;
if(f[S]==f[s]+1)pls(g[S],g[s]);
}
g[S]=1ll*g[S]*inv[tt]%p;
}
printf("%d\n",g[lim-1]);
return 0;
}
题解-PKUWC2018 随机算法的更多相关文章
- 【洛谷5492】[PKUWC2018] 随机算法(状压DP)
点此看题面 大致题意: 用随机算法求一张图的最大独立集:每次随机一个排列,从前到后枚举排列中的点,如果当前点加入点集中依然是独立集,就将当前点加入点集中,最终得到的点集就是最大独立集.求这个随机算法的 ...
- [PKUWC2018]随机算法
题意:https://loj.ac/problem/2540 给定一个图(n<=20),定义一个求最大独立集的随机化算法 产生一个排列,依次加入,能加入就加入 求得到最大独立集的概率 loj25 ...
- LG5492 [PKUWC2018]随机算法
题意 有一种贪心求最大独立集的算法: 随机一个排列 按顺序加入独立集,如果一个点能加入,就加入\({S}\) 给出一张图,问得出正确答案的概率. \(n \leq 20\) 传送门 思路 用 \(dp ...
- 题解-PKUWC2018 随机游走
Problem loj2542 题意:一棵 \(n\) 个结点的树,从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去,询问走完一个集合 \(S\)的期望时间,多组询问 \(n\le ...
- LOJ2540 [PKUWC2018] 随机算法 【状压DP】
题目分析: 听说这题考场上能被$ O(4^n) $的暴力水过,难不成出题人是毕姥爷? 首先思考一个显而易见的$ O(n^2*2^n) $的暴力DP.一般的DP都是考虑最近的加入了哪个点,然后删除后递归 ...
- LOJ2540 PKUWC2018 随机算法 状压DP
传送门 两种$DP$: ①$f_{i,j}$表示前$i$次选择,最大独立集为$j$时达到最大独立集的方案总数,转移:$a.f_{i,j}+=f_{i+1,j+2^k}$(保证$k$加入后符合条件):$ ...
- [LOJ2540] [PKUWC2018] 随机算法
题目链接 LOJ:https://loj.ac/problem/2540 Solution 写的时候脑子不太清醒码了好长然后时间\(LOJ\)垫底... 反正随便状压\(dp\)一下就好了,设\(f[ ...
- [LOJ#2540][PKUWC2018]随机算法(概率DP)
场上数据很水,比较暴力的做法都可以过90分以上,下面说几个做法. 1. 暴力枚举所有最大独立集,对每个独立集分别DP.复杂度玄学,但是由于最大独立集并不多,所以可以拿90. 2. dp[S][k]表示 ...
- 【LOJ2540】「PKUWC2018」随机算法
题意 题面 给一个 \(n\) 个点 \(m\) 条边的无向图.考虑如下求独立集的随机算法:随机一个排列并按顺序加点.如果当前点能加入独立集就加入,否则不加入.求该算法能求出最大独立集的概率. \(n ...
随机推荐
- Python package下载中遇到ReadTimeoutError: HTTPSConnectionPool?
问题描述: Python package下载中遇到ReadTimeoutError: HTTPSConnectionPool? 问题解决: 方法1:继续重复下载 pip install virtual ...
- JMeter:Dashboard Report自动生成测试报告的巧用和避坑
官网地址查阅:http://jmeter.apache.org/usermanual/generating-dashboard.html 最近在压测过程中使用 Generating Report Da ...
- Python复习笔记(十)Http协议--Web服务器-并发服务器
1. HTTP协议(超文本传输协议) 浏览器===>服务器发送的请求格式如下:(浏览器告诉服务器,浏览器的信息) GET / HTTP/1.1 Host: www.baidu.com Conne ...
- springBoot中的定时任务
springBoot中的定时任务 1:在Spring Boot的主类中加入@EnableScheduling注解,启用定时任务的配置 2:新建ScheduledTasks任务类 : package c ...
- Vertica系列: Vertica DB连接负载均衡
背景 谈到负载均衡, 对于数据库集群需要区分几个概念: 运算的负载均衡, Vertica 本身是 MPP 数据库, SQL 操作自动会利用多台机器来加快处理速度. 数据库连接的负载均衡, Vertic ...
- java 用PDFBox 删除 PDF文件中的某一页
依赖: <dependency> <groupId>org.apache.pdfbox</groupId> <artifactId>pdfbox-app ...
- 微信小程序开发(2) 计算器
在这篇微信小程序开发教程中,我们将介绍如何使用微信小程序开发计算器功能. 本文主要分为两个部分,小程序主体部分及计算器业务页面部分 一.小程序主体部分 一个小程序主体部分由三个文件组成,必须放在项目的 ...
- jQuery two way bindings(双向数据绑定插件)
jQuery two way bindings https://github.com/petersirka/jquery.bindings 这是一个简单的jQuery双向绑定库. 此插件将HTML元素 ...
- 20155324 2016-2017-2 《Java程序设计》第十周学习总结
20155324 2016-2017-2 <Java程序设计>第十周学习总结 教材学习内容总结 Java的网络编程 网络编程 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据. ...
- mysql 单表更新记录UPDATE
1.单表更新 (1)mysql> SELECT * FROM users;+----+----------+----------+-----+------+| id | username | ...