我用了两天左右的时间完成了这一门课《Introduction to Python for Data Science》的学习,之前对Python有一些基础,所以在语言层面还是比较顺利的,这门课程的最大收获是让我看到了在数据科学中Python的真正威力(也理解了为什么Python这么流行),同时本次课程的交互式练习体验(Datacamp)非常棒。

 

 

这门课程主要包括了6个单元的内容,一开始介绍了Python的基本概念(常见数据类型和变量),从第二节开始讲解列表在Python中的使用,并且逐步演进,我们还学习了使用真正为Data Science准备的几个package的应用。

 

 

从数据科学的角度来看,Python可能真的是很适合的一个编程语言和环境。这不光是因为他本身的语法比较简单,而且目前已经有几个非常强大的包(Package)对其进行支持。

 

 

Python中的list用来表示一系列的数据,它非常灵活,甚至可以在一个列表中包含不同类型的数据,当然这样也就带来了一定的负面作用,例如性能。而numpy的array则是对list的一种改进,它进行规划化(一个array的轴上只支持同一种数据类型),并提供了更多的一些与数据科学的运算(函数)。

 

 

它自身的运算规则也跟列表有极大的区别,例如

 

 

numpy库内置支持很多科学运算的函数,不需要依赖其他库

 

 

 

数据科学不光是对数据的处理,而且还需要对数据进行展示。目前全世界最流行的用来做数据可视化的库是matplotlib。

 

 

下图是一个最简单的例子

 

 

请注意,图形的数据来源既可以是List,也可以是Array,当然还可以是下面的终极解决方案DataFrame,来自pandas这个库。

 

numpy和matplotlib,可以很好地处理数据科学的场景。但如果数据量真的很大,则可能需要用到pandas了。

 

 

pandas提供了一个全新的dataframe的对象,它是完全为科学运算和统计而设计的,而且它自带了可视化组件库,不需要额外依赖matplotlib。

 

从技术上说,DataFrame很像是一个Excel表格或者数据库,它具有行和列的概念,也有索引的技术。

 

DataFrame还支持从外部文件(例如csv)或者网络地址加载数据,这将使得它真正具有实用的价值。

 

最后,我之前提到过了,本次课程给我最惊喜的一个体验是交互式练习。这是一个第三方学习平台(DataCamp)提供的,非常酷。

 

 

最后,基于Jupyter构建的notebooks.azure.com ,让我们可以在线编辑python,并且运行,形成笔记——不需要azure订阅即可使用。如果你愿意,你还可以在本地安装Jupyter。

 

本地安装Jupyter,请参考 https://jupyter.org/install.html

 

 

请通过 https://aka.ms/learningAI 或者扫描下面的二维码关注本系列文章《人工智能学习笔记》

 

人工智能第三课:数据科学中的Python的更多相关文章

  1. 数据科学中的常见的6种概率分布(Python实现)

    作者:Pier Paolo Ippolito@南安普敦大学 编译:机器学习算法与Python实战(微信公众号:tjxj666) 原文:https://towardsdatascience.com/pr ...

  2. 数据科学中需要知道的5个关于奇异值分解(SVD)的应用

    介绍 "Another day has passed, and I still haven't used y = mx + b." 这听起来是不是很熟悉?我经常听到我大学的熟人抱怨 ...

  3. 3 个用于数据科学的顶级 Python 库

    使用这些库把 Python 变成一个科学数据分析和建模工具. Python 的许多特性,比如开发效率.代码可读性.速度等使之成为了数据科学爱好者的首选编程语言.对于想要升级应用程序功能的数据科学家和机 ...

  4. 深入对比数据科学工具箱:Python和R之争

    建议:如果只是处理(小)数据的,用R.结果更可靠,速度可以接受,上手方便,多有现成的命令.程序可以用.要自己搞个算法.处理大数据.计算量大的,用python.开发效率高,一切尽在掌握. 概述 在真实的 ...

  5. 数据科学中的R和Python: 30个免费数据资源网站

    1 政府数据 Data.gov:这是美国政府收集的数据资源.声称有多达40万个数据集,包括了原始数据和地理空间格式数据.使用这些数据集需要注意的是:你要进行必要的清理工作,因为许多数据是字符型的或是有 ...

  6. 第三课 Dubbo设计中的设计模式

    责任链模式  责任链模式在Dubbo中发挥的作用举足轻重,就像是Dubbo框架的骨架.Dubbo的调用链组织是用责任链模式串连起来的. 责任链中的每个节点实现Filter接口,然后由ProtocolF ...

  7. ionic新手教程第三课-在项目中使用requirejs分离controller文件和server文件

    继上篇教程中提到的,我们新建一个简单的tabs类型的Ionic项目. 依据文件夹文件我们知道,系统自己主动创建了一个controller文件和server文件,而且把全部的控制器和服务都写到这两个文件 ...

  8. python 在数据科学中的应用之matplotlib

    1.matplotlib模块生成直线图和散点图 >>>import matplotlib.pyplot as plt >>>year = [1950,1970,19 ...

  9. python中令人惊艳的小众数据科学库

    Python是门很神奇的语言,历经时间和实践检验,受到开发者和数据科学家一致好评,目前已经是全世界发展最好的编程语言之一.简单易用,完整而庞大的第三方库生态圈,使得Python成为编程小白和高级工程师 ...

随机推荐

  1. 生成二维码图片(tp3.2)

    下载二维码库 放在适合的地方 生成二维码 这里存在表里 效果(查看时)

  2. sqoop错误集锦2

    1.使用sqoop技术将mysql的数据导入到Hive出现的错误如下所示: 第一次使用命令如下所示: 1 [hadoop@slaver1 sqoop-1.4.5-cdh5.3.6]$ bin/sqoo ...

  3. ARM指令学习

    跳转指令 直接向程序计数器PC写入i跳转地址值,可以实现在4GB的地址空间中的任意跳转. ARM跳转指令可以完成向前或向后的32MB的地址空间的跳转. -B 跳转指令 -BL 带返回的跳转指令 -BL ...

  4. Android中实现gif动画

    一.需求 Android本身没有提供直接显示gif动画的相关控件,因此需要自定义GifImageView类来实现gif的播放,主要是使用的Movie类来解决的. 二.自定义GifImageView p ...

  5. MFC中的一些视图

    本章主要介绍MFC中主要的视图类,这些继承自Cview类. 继承关系如上图所示. 滚动视图 CscrollView给Cview添加了基本的滚动功能,它包含WM_VSCROLL和WM_HSCROLL消息 ...

  6. 亲子编程玩Micro:bit-动力小车“麦昆”

    少儿编程之风已经吹进各大城市,编程猫.乐博机器人.童程童美等专业培训机构逐渐进入大家的视野,年龄段已经从K12逐渐降低到幼儿园中班.其实,少儿编程的门槛并不高,它不会让孩子一上手就去接触代码,而是会通 ...

  7. Dubbo 源码分析 - 服务调用过程

    注: 本系列文章已捐赠给 Dubbo 社区,你也可以在 Dubbo 官方文档中阅读本系列文章. 1. 简介 在前面的文章中,我们分析了 Dubbo SPI.服务导出与引入.以及集群容错方面的代码.经过 ...

  8. Dubbo 源码分析 - 集群容错之 LoadBalance

    1.简介 LoadBalance 中文意思为负载均衡,它的职责是将网络请求,或者其他形式的负载"均摊"到不同的机器上.避免集群中部分服务器压力过大,而另一些服务器比较空闲的情况.通 ...

  9. Spark机器学习解析下集

    上次我们讲过<Spark机器学习(上)>,本文是Spark机器学习的下部分,请点击回顾上部分,再更好地理解本文. 1.机器学习的常见算法 常见的机器学习算法有:l   构造条件概率:回归分 ...

  10. Django项目配置日志

    LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'verbose': { 'format': ...