Description

很久很久以前,有一只神犇叫yzy;

很久很久之后,有一只蒟蒻叫lty;

Input

请你读入一个整数N;1<=N<=1E9,A、B模1E9+7;

Output

请你输出一个整数A=\sum_{i=1}^N{\mu (i^2)};

请你输出一个整数B=\sum_{i=1}^N{\varphi (i^2)};

Sample Input

1

Sample Output

1

1


思路

首先发现第一个一定是1.。。。

然后发现第二个其实可以表示成

\[\sum_{i = 1}^n\phi(i)*i
\]

然后我们令

\[f(i)=\phi(i)*i
\\
g(i)=i
\]

那么可以得到

\[ans=Sum(n)=\sum_{i=1}^nf(i)
\]

又因为

\[\sum_{i = 1}^n\sum_{d|i}f(d)g(\frac{i}{d})=\sum_{i=1}^n i^2=\frac{n *(n + 1)*(2n+1)}{6}
\]

\[\sum_{i = 1}^n\sum_{d|i}f(d)g(\frac{i}{d})=\sum_{k = 1}^ng(k)\sum_{d = 1}^{\lfloor\frac{n}{k}\rfloor}f(d)=\sum_{k = 1}^ng(k)Sum(\lfloor\frac{n}{k}\rfloor)
\]

所以有

\[Sum(n)=\frac{n *(n + 1)*(2n+1)}{6}-\sum_{k = 2}^ng(k)Sum(\lfloor\frac{n}{k}\rfloor)
\]

然后上杜教筛板子。。


#include<bits/stdc++.h>

using namespace std;

typedef long long ll;

const ll Mod = 1e9 + 7;
const ll N = 1e7 + 10;
const ll inv6 = 166666668;
const ll inv2 = 500000004; ll prime[N], cnt = 0;
ll phi[N], sum[N], vis[N]; map<ll, ll> mp; ll add(ll a, ll b) {
return (a += b) >= Mod ? a - Mod : a;
} ll sub(ll a, ll b) {
return (a -= b) < 0 ? a + Mod : a;
} ll mul(ll a, ll b) {
return a * b % Mod;
} void get_prime() {
phi[1] = 1;
for (ll i = 2; i < N; i++) {
if (!vis[i]) {
phi[i] = i - 1;
prime[++cnt] = i;
}
for (ll j = 1; j <= cnt && i * prime[j] < N; j++) {
vis[i * prime[j]] = 1;
if (i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
} else {
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
for (ll i = 1; i < N; i++)
sum[i] = add(sum[i - 1], mul(i, phi[i]));
} ll solve(ll n) {
if (n < N) return sum[n];
if (mp.count(n)) return mp[n];
ll res = mul(mul(n, n + 1), mul(2 * n + 1, inv6));
for (ll i = 2; i <= n; i++) {
ll j = n / (n / i);
res = sub(res, mul(solve(n / i), mul(inv2, mul(i + j, j - i + 1))));
i = j;
}
return mp[n] = res;
} int main() {
get_prime();
ll n; cin >> n;
cout << 1 << "\n" << solve(n);
return 0;
}

BZOJ4916: 神犇和蒟蒻【杜教筛】的更多相关文章

  1. BZOJ4916: 神犇和蒟蒻(杜教筛)

    题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...

  2. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  3. 【BZOJ4916】神犇和蒟蒻 杜教筛

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916 第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑 ...

  4. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  5. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  6. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  7. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. 【BZOJ4916】神犇和蒟蒻 解题报告

    [BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...

随机推荐

  1. 《剑指offer》第十三题(机器人的运动范围)

    // 面试题:机器人的运动范围 // 题目:地上有一个m行n列的方格.一个机器人从坐标(0, 0)的格子开始移动,它 // 每一次可以向左.右.上.下移动一格,但不能进入行坐标和列坐标的数位之和 // ...

  2. 算法笔记--区间dp

    1.石子归并问题 dp[i][j]表示区间i到j合并所需的最小花费. 先求出小区间的最小花费,再转移到大的区间. 转移方程:dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1] ...

  3. Apache配置文件httpd.conf细说

    1.httpd.conf文件位于apache安装目录/conf下2.Listen 88表示监听端口88 此处可以连续写多个端口监听如下: Listen 88 Listen 809 3.目录配置如下: ...

  4. English trip -- VC(情景课) 6 C Is your class at 11:00? 你的课11点开始吗?

    Grammar focus 语法点 Is your class  at 11:00 ?  # 带be动词的一般疑问句 Yes, it is No, it isn't   相当于 is not  Pra ...

  5. 20170523xlVBA多条件分类求和一例

    Public Sub NextSeven_CodeFrame() Application.ScreenUpdating = False Application.DisplayAlerts = Fals ...

  6. JavaScript 和 React,React用了大量语法糖,让JS编写更方便。

    https://reactjs.org/docs/higher-order-components.htmlhttps://codepen.io/gaearon/pen/WooRWa?editors=0 ...

  7. codeforces 853b//Jury Meeting// Codeforces Round #433 (Div. 1)

    题意:几个人要去一个城市k天,现给出各航班的日期和花费,让这n个人能相会k天的最小花费? 用数组arr1[i]记录在第i天人到齐的最小花费.arr2[i]记录第i天之后才有人开始走的最小花费.然后取a ...

  8. Garlands CodeForces - 707E (离线树状数组)

    大意: 给定n*m矩阵, k条链, 链上每个点有权值, 每次操作可以关闭或打开一条链或询问一个子矩阵内未关闭的权值和. 关键询问操作比较少, 可以枚举每条链, 暴力算出该条链对每个询问的贡献. 最后再 ...

  9. 使用python创建mxnet操作符(网络层)

    对cuda了解不多,所以使用python创建新的操作层是个不错的选择,当然这个性能不如cuda编写的代码. 在MXNET源码的example/numpy-ops/下有官方提供的使用python编写新操 ...

  10. python 爬取京东手机图

    初学urllib,高手勿喷... import re import urllib.request #函数:每一页抓取的30张图片 def craw(url,page): imagelist = []# ...