BZOJ4916: 神犇和蒟蒻【杜教筛】
Description
很久很久以前,有一只神犇叫yzy;
很久很久之后,有一只蒟蒻叫lty;
Input
请你读入一个整数N;1<=N<=1E9,A、B模1E9+7;
Output
请你输出一个整数A=\sum_{i=1}^N{\mu (i^2)};
请你输出一个整数B=\sum_{i=1}^N{\varphi (i^2)};

Sample Input
1
Sample Output
1
1
思路
首先发现第一个一定是1.。。。
然后发现第二个其实可以表示成
\]
然后我们令
\\
g(i)=i
\]
那么可以得到
\]
又因为
\]
且
\]
所以有
\]
然后上杜教筛板子。。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll Mod = 1e9 + 7;
const ll N = 1e7 + 10;
const ll inv6 = 166666668;
const ll inv2 = 500000004;
ll prime[N], cnt = 0;
ll phi[N], sum[N], vis[N];
map<ll, ll> mp;
ll add(ll a, ll b) {
return (a += b) >= Mod ? a - Mod : a;
}
ll sub(ll a, ll b) {
return (a -= b) < 0 ? a + Mod : a;
}
ll mul(ll a, ll b) {
return a * b % Mod;
}
void get_prime() {
phi[1] = 1;
for (ll i = 2; i < N; i++) {
if (!vis[i]) {
phi[i] = i - 1;
prime[++cnt] = i;
}
for (ll j = 1; j <= cnt && i * prime[j] < N; j++) {
vis[i * prime[j]] = 1;
if (i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
} else {
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
for (ll i = 1; i < N; i++)
sum[i] = add(sum[i - 1], mul(i, phi[i]));
}
ll solve(ll n) {
if (n < N) return sum[n];
if (mp.count(n)) return mp[n];
ll res = mul(mul(n, n + 1), mul(2 * n + 1, inv6));
for (ll i = 2; i <= n; i++) {
ll j = n / (n / i);
res = sub(res, mul(solve(n / i), mul(inv2, mul(i + j, j - i + 1))));
i = j;
}
return mp[n] = res;
}
int main() {
get_prime();
ll n; cin >> n;
cout << 1 << "\n" << solve(n);
return 0;
}
BZOJ4916: 神犇和蒟蒻【杜教筛】的更多相关文章
- BZOJ4916: 神犇和蒟蒻(杜教筛)
题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...
- [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛
题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...
- 【BZOJ4916】神犇和蒟蒻 杜教筛
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916 第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑 ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】
题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...
- BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)
第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...
- Bzoj4916: 神犇和蒟蒻
题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...
- 【BZOJ4916】神犇和蒟蒻(杜教筛)
[BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...
- 【BZOJ4916】神犇和蒟蒻 解题报告
[BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...
随机推荐
- 《剑指offer》第六题(重要!从尾到头打印链表)
文件main.cpp // 从尾到头打印链表 // 题目:输入一个链表的头结点,从尾到头反过来打印出每个结点的值. #include <iostream> #include <sta ...
- [.NET源码] EF的增删改查
EF的增删改查 创建上下文对象:WordBoradEntities db = new WordBoradEntities(); 一.添加: //1.1创建实体对象 User uObj = new Us ...
- English trip -- Review Unit6 Time 时间
It's at seven o'clock 整点 7点整 It's at half past seven or It's seven-thirty7点30 It's at seven fi ...
- Confluence 6 使用 LDAP 授权连接一个内部目录 - 用户组 Schema 设置
请注意:这部分仅在拷贝用户登录(Copy User on Login)和 同步组成员(Synchronize Group Memberships)被启用后可见. 其他用户组 DN(Additional ...
- 基于binlog的增量备份
1.1 增量备份简介 增量备份是指在一次全备份或上一次增量备份后,以后每次的备份只需备份与前一次相比增加或者被修改的文件.这就意味着,第一次增量备份的对象是进行全备后所产生的增加和修改的文件:第二次增 ...
- ubuntu软件(查看文件差异)
你可以在ubuntu系统自带的软件--->ubuntu软件中心输入:meld diff 就可以安装.
- thinkphp中页面中时间的默认显示
1,第一我们都知道thinkphp 控制器和页面是通过$this->assgin();或着$this->在页面中要得到的值的随便变量 ,来传值的 比如(此方法是在有时间控件才能使用的) ...
- hdu-1907-反nim博弈
John Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submis ...
- UVA-1220 Party at Hali-Bula (树的最大独立集)
题目大意:数的最大独立集问题.特殊在要求回答答案是否唯一. 题目分析:定义状态dp(i,1),dp(i,0)分别表示以i为根节点的子树选不选i最多可选的人数,f(i,1),f(i,0)分别表示以i为根 ...
- SqlDataReader的用法
datareader对象提供只读单向数据的快速传递,单向:您只能依次读取下一条数据;只读:DataReader中的数据是只读的,不能修改;相对地,DataSet中的数据可以任意读取和修改 01.usi ...