BZOJ4916: 神犇和蒟蒻【杜教筛】
Description
很久很久以前,有一只神犇叫yzy;
很久很久之后,有一只蒟蒻叫lty;
Input
请你读入一个整数N;1<=N<=1E9,A、B模1E9+7;
Output
请你输出一个整数A=\sum_{i=1}^N{\mu (i^2)};
请你输出一个整数B=\sum_{i=1}^N{\varphi (i^2)};

Sample Input
1
Sample Output
1
1
思路
首先发现第一个一定是1.。。。
然后发现第二个其实可以表示成
\]
然后我们令
\\
g(i)=i
\]
那么可以得到
\]
又因为
\]
且
\]
所以有
\]
然后上杜教筛板子。。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll Mod = 1e9 + 7;
const ll N = 1e7 + 10;
const ll inv6 = 166666668;
const ll inv2 = 500000004;
ll prime[N], cnt = 0;
ll phi[N], sum[N], vis[N];
map<ll, ll> mp;
ll add(ll a, ll b) {
return (a += b) >= Mod ? a - Mod : a;
}
ll sub(ll a, ll b) {
return (a -= b) < 0 ? a + Mod : a;
}
ll mul(ll a, ll b) {
return a * b % Mod;
}
void get_prime() {
phi[1] = 1;
for (ll i = 2; i < N; i++) {
if (!vis[i]) {
phi[i] = i - 1;
prime[++cnt] = i;
}
for (ll j = 1; j <= cnt && i * prime[j] < N; j++) {
vis[i * prime[j]] = 1;
if (i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
} else {
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
for (ll i = 1; i < N; i++)
sum[i] = add(sum[i - 1], mul(i, phi[i]));
}
ll solve(ll n) {
if (n < N) return sum[n];
if (mp.count(n)) return mp[n];
ll res = mul(mul(n, n + 1), mul(2 * n + 1, inv6));
for (ll i = 2; i <= n; i++) {
ll j = n / (n / i);
res = sub(res, mul(solve(n / i), mul(inv2, mul(i + j, j - i + 1))));
i = j;
}
return mp[n] = res;
}
int main() {
get_prime();
ll n; cin >> n;
cout << 1 << "\n" << solve(n);
return 0;
}
BZOJ4916: 神犇和蒟蒻【杜教筛】的更多相关文章
- BZOJ4916: 神犇和蒟蒻(杜教筛)
题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...
- [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛
题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...
- 【BZOJ4916】神犇和蒟蒻 杜教筛
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916 第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑 ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】
题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...
- BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)
第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...
- Bzoj4916: 神犇和蒟蒻
题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...
- 【BZOJ4916】神犇和蒟蒻(杜教筛)
[BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...
- 【BZOJ4916】神犇和蒟蒻 解题报告
[BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...
随机推荐
- Java成神之路技术整理
关于 Java 的技术干货,从以下几个方面汇总. Java 基础篇 Java 集合篇 Java 多线程篇 Java JVM篇 Java 进阶篇 Java 新特性篇 Java 工具篇 Java 书籍篇 ...
- URAL 2072 Kirill the Gardener 3
URAL 2072 思路: dp+离散化 由于湿度的范围很大,所以将湿度离散化 可以证明,先到一种湿度的最左端或者最右端,然后结束于最右端或最左端最优,因为如果结束于中间,肯定有重复走的路 状态:dp ...
- jsonp跨域远离
http://blog.csdn.net/sky_beyond/article/details/54096275 function ajax( obj ){ // 默认参数 由于 jsonp 原理是 ...
- C++编程模板2
C++编程模板2 #include <iostream> using namespace std; /* */ int main(){ int ans; printf("%d\n ...
- Dalvik VM (DVM) 与Java VM (JVM) 的区别?
Dalvik虚拟机存在于Android系统,JVM是java虚拟机,两者都是虚拟机,本文就对两者进行比较,讲述它们的不同. Dalvik虚拟机是Google等厂商合作开发的Android移动设备平台的 ...
- Spring Cloud常用组件介绍
一.Eureka (Netfix下) 云端服务发现,一个基于 REST 的服务,用于定位服务,以实现云端中间层服务发现和故障转移. 二.Spring Cloud Config (Spring下) 配置 ...
- 莫比乌斯反演学习笔记(转载自An_Account大佬)
转载自An_Account大佬 提示:别用莫比乌斯反演公式,会炸的 只需要记住: [gcd(i,j)=1]=∑d∣gcd(i,j)μ(d)[gcd(i,j)=1]=\sum_{d|gcd(i,j)}\ ...
- RMQ板子
对于RMQ这种静态最值询问, 用线段树的话查询过慢, 一般用ST表预处理后O(1)查询, 下以最大值查询为例, 这里假定$n$不超过5e5 void init() { Log[0] = -1; REP ...
- Python的第二次作业
羊车门问题 1.我认为 会 增加选中汽车的机会,原因如下: 不换的情况:对于参赛者而言无论选哪一扇门都有1/3的几率能获得车子. 换的情况 :对于参赛者而言,有两种情况「1.参赛者第一次就选择到了正 ...
- Harbor和YUM部署for CentOS 7
Harbor部署for CentOS 7 下载 wget https://storage.googleapis.com/harbor-releases/release-1.7.0/harbor-off ...