混合高斯模型(Mixtures of Gaussians)
http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。
与k-means一样,给定的训练样本是,我们将隐含类别标签用
表示。与k-means的硬指定不同,我们首先认为
是满足一定的概率分布的,这里我们认为满足多项式分布,
,其中
,
有k个值{1,…,k}可以选取。而且我们认为在给定
后,
满足多值高斯分布,即
。由此可以得到联合分布
。
整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个
,然后根据
所对应的k个多值高斯分布中的一个生成样例
,。整个过程称作混合高斯模型。注意的是这里的
仍然是隐含随机变量。模型中还有三个变量
和
。最大似然估计为
。对数化后如下:
这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的,那么上式可以简化为:
这时候我们再来对和
进行求导得到:
就是样本类别中
的比率。
是类别为j的样本特征均值,
是类别为j的样例的特征的协方差矩阵。
实际上,当知道后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。
之前我们是假设给定了,实际上
是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:
循环下面步骤,直到收敛: { (E步)对于每一个i和j,计算 (M步),更新参数: } |
在E步中,我们将其他参数看作常量,计算
的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,
值又不对了,需要重新计算,周而复始,直至收敛。
的具体计算公式如下:
这个式子利用了贝叶斯公式。
这里我们使用代替了前面的
,由简单的0/1值变成了概率值。
对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。
虽然之前再K-means中定性描述了EM的收敛性,仍然没有定量地给出,还有一般化EM的推导过程仍然没有给出。下一篇着重介绍这些内容。
混合高斯模型(Mixtures of Gaussians)的更多相关文章
- 混合高斯模型(Mixtures of Gaussians)和EM算法
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示 ...
- 混合高斯模型的EM求解(Mixtures of Gaussians)及Python实现源代码
今天为大家带来混合高斯模型的EM推导求解过程. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHVhbnl1YW5zZW4=/font/5a6L5L2T/ ...
- <转>与EM相关的两个算法-K-mean算法以及混合高斯模型
转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...
- EM相关两个算法 k-mean算法和混合高斯模型
转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...
- 混合高斯模型(GMM)推导及实现
作者:桂. 时间:2017-03-20 06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...
- PRML读书会第九章 Mixture Models and EM(Kmeans,混合高斯模型,Expectation Maximization)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-me ...
- Opencv混合高斯模型前景分离
#include "stdio.h" #include "string.h" #include "iostream" #include &q ...
- 混合高斯模型:opencv中MOG2的代码结构梳理
/* 头文件:OurGaussmix2.h */ #include "opencv2/core/core.hpp" #include <list> #include&q ...
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
随机推荐
- MVC验证
前言 MVC自己的验证机制,通过一个案例记录学习的成果. 首先,model代码如下: public class Students { [Display(Name = "I ...
- IOS 7 更改导航栏文字到白色
To hide status bar in any viewcontroller: -(BOOL) prefersStatusBarHidden { return YES; } To change t ...
- Docker 容器管理:rancher
Rancher:https://www.cnrancher.com/ 是一个开源的企业级全栈化容器部署及管理平台. 定位上和 K8s 比较接近,都是通过 web 界面赋予完全的 docker 服务编排 ...
- Guideline 2.5.1 - Performance - Software Requirements
Guideline - Performance - Software Requirements Your app uses the "prefs:root=" non-public ...
- js获取文件对象
- ActiveMQ延迟消息配置
ActiveMQ使用延迟消息,需要在activemq.xml配置文件中添加这项: schedulerSupport="true" <broker xmlns="ht ...
- RGB颜色值与十六进制颜色码对照表
颜色码对照表 颜色 英文代码 形象描述 十六进制 RGB LightPink 浅粉红 #FFB6C1 255,182,193 Pink 粉红 #FFC0CB 255,192,203 Crimson 猩 ...
- ubuntu安装Anaconda2-4.4.0+TensorFlow
1.下载Anaconda 到官网http://continuum.io/downloads下载anaconda. 2.安装anaconda 在终端输入:cd ~/Downloads; b ...
- hihocoder 1330 - 数组重排 - [hiho一下167周][最小公倍数]
题目链接:https://hihocoder.com/problemset/problem/1330 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi想知道,如果他 ...
- hue安装及基本测试-笔记
#################################################################################################### ...