http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html

这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。

与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中有k个值{1,…,k}可以选取。而且我们认为在给定后,满足多值高斯分布,即。由此可以得到联合分布

整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值高斯分布中的一个生成样例,。整个过程称作混合高斯模型。注意的是这里的仍然是隐含随机变量。模型中还有三个变量。最大似然估计为。对数化后如下:

这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的,那么上式可以简化为:

这时候我们再来对进行求导得到:

就是样本类别中的比率。是类别为j的样本特征均值,是类别为j的样例的特征的协方差矩阵。

实际上,当知道后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。

之前我们是假设给定了,实际上是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:

循环下面步骤,直到收敛: {

(E步)对于每一个i和j,计算

(M步),更新参数:

}

在E步中,我们将其他参数看作常量,计算的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,值又不对了,需要重新计算,周而复始,直至收敛。

的具体计算公式如下:

这个式子利用了贝叶斯公式。

这里我们使用代替了前面的,由简单的0/1值变成了概率值。

对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。

虽然之前再K-means中定性描述了EM的收敛性,仍然没有定量地给出,还有一般化EM的推导过程仍然没有给出。下一篇着重介绍这些内容。

混合高斯模型(Mixtures of Gaussians)的更多相关文章

  1. 混合高斯模型(Mixtures of Gaussians)和EM算法

    这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示 ...

  2. 混合高斯模型的EM求解(Mixtures of Gaussians)及Python实现源代码

    今天为大家带来混合高斯模型的EM推导求解过程. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHVhbnl1YW5zZW4=/font/5a6L5L2T/ ...

  3. <转>与EM相关的两个算法-K-mean算法以及混合高斯模型

    转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...

  4. EM相关两个算法 k-mean算法和混合高斯模型

    转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...

  5. 混合高斯模型(GMM)推导及实现

    作者:桂. 时间:2017-03-20  06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...

  6. PRML读书会第九章 Mixture Models and EM(Kmeans,混合高斯模型,Expectation Maximization)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-me ...

  7. Opencv混合高斯模型前景分离

    #include "stdio.h" #include "string.h" #include "iostream" #include &q ...

  8. 混合高斯模型:opencv中MOG2的代码结构梳理

    /* 头文件:OurGaussmix2.h */ #include "opencv2/core/core.hpp" #include <list> #include&q ...

  9. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

随机推荐

  1. [通信] C#多线程Socket-文件传输

    FileSendClient : Form1.cs using System; using System.IO; using System.Net; using System.Net.Sockets; ...

  2. html处理富文本内容,避免XSS工具类

    import org.apache.commons.lang3.StringEscapeUtils;import org.jsoup.Jsoup;import org.jsoup.safety.Whi ...

  3. c++的矩阵乘法加速trick

    最近读RNNLM的源代码,发现其实现矩阵乘法时使用了一个trick,这里描述一下这个trick. 首先是正常版的矩阵乘法(其实是矩阵乘向量) void matrixXvector(float* des ...

  4. 解析xml文件的几种技术与Dom4j与sax之间的对比

    一.解析xml文件的几种技术:dom4j.sax.jaxb.jdom.dom 1.dom4j dom4j是一个Java的XML API,类似于jdom,用来读写XML文件的.dom4j是一个非常优秀的 ...

  5. thinkphp----替换写标签的方法

    在用thinkphp写cmf的时候,考虑到一些方法的复用,所以考虑使用写标签. 写标签的好处在于:通用,而且比较容易看,但是封装一个标签,个人觉得还是比较麻烦,想了想 thinkcmf 调用文章的方式 ...

  6. pandas生成时间列表(某段连续时间或者固定间隔时间段)

    python生成一个日期列表 首先导入pandas import pandas as pd def get_date_list(begin_date,end_date): date_list = [x ...

  7. 7.19python昨日复习和多线程(2)

    2018-7-19 21:39:49 我觉得这次的笔记是非常非常完美的!!!明天继续 睡觉去啦! 傍黑时候和晴宝打电话,她特能说,很喜欢这种感觉,有好多东西要和你分享! 1.复习! # !/usr/b ...

  8. 一次使用Python连接数据库生成二维码并安装为windows服务的工作任务

    最近有一个需求,在现有生产系统上的人员库中增加一个此人员关键信息的二维码,支持文字版和跳转版两种方式,与报表工具关联,可打印.以windows服务方式,定时检查,只要发现某人员没有此二维码信息,就生成 ...

  9. 2018牛客网暑期ACM多校训练营(第三场) A - PACM Team - [四维01背包][四约束01背包]

    题目链接:https://www.nowcoder.com/acm/contest/141/A 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

  10. inaccessible

    $w = (object)array('key0'=>'a','key1'=>'b',0,1,2,0=>'0w',1=>'1w','11'=>'11str'); var_ ...