PCL法线估计
平面的法线是垂直于它的单位向量。在点云的表面的法线被定义为垂直于与点云表面相切的平面的向量。表面法线也可以计算点云中一点的法线,被认为是一种十分重要的性质。常常在被使用在很多计算机视觉的应用里面,比如可以用来推出光源的位置,通过阴影与其他视觉影响,表面法线的问题可以近似化解为切面的问题,这个切面的问题又会变成最小二乘法拟合平面的问题
解决表面法线估计的问题可以最终化简为对一个协方差矩阵的特征向量和特征值的分析(或者也叫PCA-Principal Component Analysis 主成分分析),这个协方差矩阵是由查询点的最近邻产生的。对于每个点Pi,我们假设协方差矩阵C如下:
法线提供了关于曲面的曲率信息,这是它的优势。许多的PCL的算法需要我们提供输入点云的法线。为了估计它们,代码分析如下
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d.h>
#include <boost/thread/thread.hpp>
#include <pcl/visualization/pcl_visualizer.h> int main(int argc,char**argv)
{
//创建点云对象
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
//创建法线的对象
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
//读取PCD文件
if(pcl::io::loadPCDFile<pcl::PointXYZ>(argv[],*cloud) !=)
{
return -;
}
//创建法线估计的对象
pcl::NormalEstimation<pcl::PointXYZ,pcl::Normal> normalEstimation;
normalEstimation.setInputCloud(cloud);
//对于每一个点都用半径为3cm的近邻搜索方式
normalEstimation.setRadiusSearch(0.03);
//Kd_tree是一种数据结构便于管理点云以及搜索点云,法线估计对象会使用这种结构来找到哦啊最近邻点
pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree(new pcl::search::KdTree<pcl::PointXYZ>);
normalEstimation.setSearchMethod(kdtree); //计算法线
normalEstimation.compute(*normals);
//可视化
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Normals"));
viewer->addPointCloud<pcl::PointXYZ>(cloud,"cloud"); while(!viewer->wasStopped())
{
viewer->spinOnce();
boost::this_thread::sleep(boost::posix_time::microseconds());
} }
试验结果就是运行命令,这里就随便输入一个PCD 文件
可能看不处什么效果*********************
(2)图像积分
积分图像是对有序点云的发现的估计的一种方法。该算法把点云作为一个深度图像,并创建一定的矩形区域来计算法线,考虑到相邻像素关系,而无需建立树形查询结构。因此,它是非常有效的。
#include <pcl/io/pcd_io.h>
#include <pcl/features/integral_image_normal.h>
#include <boost/thread/thread.hpp>
#include <pcl/visualization/pcl_visualizer.h> int
main(int argc, char** argv)
{
// 点云数据对象
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
// 法线对象
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>); // 读取文件
if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[], *cloud) != )
{
return -;
} // 法线估计对象
pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal> normalEstimation;
normalEstimation.setInputCloud(cloud);
// 法线估计方法: COVARIANCE_MATRIX, AVERAGE_DEPTH_CHANGE, SIMPLE_3D_GRADIENT. normalEstimation.setNormalEstimationMethod(normalEstimation.AVERAGE_3D_GRADIENT);
//设置深度变化的阀值
normalEstimation.setMaxDepthChangeFactor(0.02f);
// 设置计算法线的区域
normalEstimation.setNormalSmoothingSize(10.0f); // 计算
normalEstimation.compute(*normals); // 可视化
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Normals"));
viewer->addPointCloud<pcl::PointXYZ>(cloud, "cloud"); viewer->addPointCloudNormals<pcl::PointXYZ, pcl::Normal>(cloud, normals, , 0.03, "normals");
while (!viewer->wasStopped())
{
viewer->spinOnce();
boost::this_thread::sleep(boost::posix_time::microseconds());
}
}
结果可视化
具体官方的网址查看pointclouds.org/documentation/tutorials/normal_estimation_using_integral_images.php
大神请忽略!!!!
微信公众号号可扫描二维码一起共同学习交流
PCL法线估计的更多相关文章
- 从零开始一起学习SLAM | 点云平滑法线估计
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文编程练习框架及数据获取方法见文末获取方式 菜单栏点击"知识星球"查看「从零开始学习SLAM」一 ...
- PCL点云分割(1)
点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞 ...
- PCL点云配准(1)
在逆向工程,计算机视觉,文物数字化等领域中,由于点云的不完整,旋转错位,平移错位等,使得要得到的完整的点云就需要对局部点云进行配准,为了得到被测物体的完整数据模型,需要确定一个合适的坐标系,将从各个视 ...
- PCL点云曲面重建(1)
在测量较小的数据时会产生一些误差,这些误差所造成的不规则数据如果直接拿来曲面重建的话,会使得重建的曲面不光滑或者有漏洞,可以采用对数据重采样来解决这样问题,通过对周围的数据点进行高阶多项式插值来重建表 ...
- PCL点云特征描述与提取(2)
点特征直方图(PFH)描述子 正如点特征表示法所示,表面法线和曲率估计是某个点周围的几何特征基本表示法.虽然计算非常快速容易,但是无法获得太多信息,因为它们只使用很少的几个参数值来近似表示一个点的k邻 ...
- PCL点云特征描述与提取(1)
3D点云特征描述与提取是点云信息处理中最基础也是最关键的一部分,点云的识别.分割,重采样,配准曲面重建等处理大部分算法,都严重依赖特征描述与提取的结果.从尺度上来分,一般分为局部特征的描述和全局特征的 ...
- PCL关键点(1)
关键点也称为兴趣点,它是2D图像或是3D点云或者曲面模型上,可以通过定义检测标准来获取的具有稳定性,区别性的点集,从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在 ...
- 解决PCL MLS : error LNK2019; error LNK2001 virtual MovingLeastSquares process performProcessing问题
PCL 基于多项式拟合的法线估计.点云平滑和数据重采样 在使用Window VS2010为开发平台,学习PCL点云库的时候,学到曲面重建(Surface).在测试下面的程序的时候,遇到了问题. #in ...
- PCL贪婪投影三角化算法
贪婪投影三角化算法是一种对原始点云进行快速三角化的算法,该算法假设曲面光滑,点云密度变化均匀,不能在三角化的同时对曲面进行平滑和孔洞修复. 方法: (1)将三维点通过法线投影到某一平面 (2)对投影得 ...
随机推荐
- 类里的通用成员函数应声明为static
类C的成员函数f,如果f的实现实现不依赖于C的任何成员变量,则f为通用函数. 对于通用函数f,可以将其从类C中分离出来做成一个全局函数,也可以仍然让它属于类C,但加上static. 两种处理方法实际都 ...
- update document in mongodb using java -摘自网络
update document in mongodb using java: Mongodb driver provides functionality to update document in m ...
- PhotoShop CS6实现照片背景虚化效果
在摄影实践中,虚化背景是突出主体的常用手段.但是由于消费级DC镜头的实际焦距都很短,因此实现浅景深而虚化背景的难度较大.如果我们希望用消费级DC也能达到虚化背景突出主体的效果,那么,Photoshop ...
- JDK1.5新特性,基础类库篇,扫描类(Scanner)用法
一. 背景 这是一个简单的文本扫描类,能够解析基本数据类型与字符串.它是StringTokenizer和Matcher类之间的某种结合. 最大的优点是读取控制台输入非常方便,其它功能,有点鸡肋. 二. ...
- 四、s3c2440 裸机开发 通用异步收发器UARN
四.通用异步收发器UARN 原文地址 http://blog.csdn.net/woshidahuaidan2011/article/details/51137047 by jaosn Email: ...
- sql左右连接测试
with a as (select 1 as id, 'name1'as nameunionselect 2 as id, 'name2'as nameunionselect 3 as id, 'na ...
- RVM切换ruby版本号
RVM是Ruby Version Manager的缩写,是一个命令行工具,它能够让你轻松地安装,管理和使用多个版本号的Ruby.不同的rails项目使用等ruby和rails版本号不一样的时候.能够使 ...
- AI重要算法
https://www.quora.com/Is-a-single-layered-ReLu-network-still-a-universal-approximator/answer/Conner- ...
- (转)Using Python3.5 in Ubuntu - Trusty
转自:https://www.reddit.com/r/IPython/comments/3lf81w/using_python35_in_ubuntu_trusty/Note:照这个方案安装pyth ...
- EntityFramework安装和EF升级方法
例如:如何在vs2010上安装EntityFramework5.0? 首先,需要安装一个vs插件,名称为NuGet Package Manager,微软官方发布的,其作用就是为vs工程项目自动下载.安 ...